dentinnsmr467
?>

Решите уравнение cos^2x+cosx=sin^2x

Алгебра

Ответы

marimelons795
cos^{2}x+cosx=sin^{2}x\\cos^{2}x-sin^{2}x+cosx=0\\cos^{2}x-(1-cos^{2}x)+cosx=0\\2cos^{2}x+cos^{2}x-1=0\\cosx=u\\2u^{2}+u-1=0\\D:1+8=9\\x_1,_2= \frac{-1\pm 3}{4} \\x_1= \frac{1}{2} \\x_2=-1\\\\1)cosx = \frac{1}{2}\\x=\pm arccos \frac{1}{2} +2\pi n\\x=\pm \frac{\pi}{3} +2\pi n, n\in Z\\\\2)cosx=-1\\x=\pi+2\pi n,n\in Z.
Avdeeva Inga1505
2)y=-3
3)f`(x)=39x²-7x
f`(0)=0
f`(-1)=39+7=46
f`(0)+f`(-1)=0+46=46
4)y`=-2x/2√(x²+1)³=-1/√(x²+1)³
5)y`=24(1/3x-64)^23 * 1/3=8(1/3x -64)^23
6)y`=1/cos²x
y`(π/3)=1/cos²π/3=1:1/4=4
7)tga=f`(x0)
f`(x)=6x²-5
f`(2)=6*4-5=24-5=19
tga=19
8)f(x)=x^8 -1
f`(x)=8x^7
9)y`=8cos3x*(-sin3x)*3=-24cos3xsin3x=-12sin6x
10)f(x)=1-4x²
f`(x)=-8x
f`(0,5)=-8*0,5=-4
11)y(1)=1+1=2
y`=4x³+1
y`(1)=4+1=5
Y=2+5(x-1)=2+5x-5=5x-3
12)f(1)=1
f`(x)=1/(2√x)
f`(1)=1/2
Y=1+1/2(x-1)=1+1/2x-1/2=1/2x+1/2
Y(31)=1/2*31+1/2=32*1/2=16
13)f`(x)=9-x²≥0
x²=9
x=+-3
               _                +                  _

                       -3                    3
x∈[-3;3]
14)(√x-4/√x)`=1/2√x +2/√x³=(x+4)/2√x³
kondrashovalf6404
5x² + 3x - 8 > 0
5x² + 3x - 8 = 0
D = 9 + 8·4·5 = 169 = 13²

x_1 = \dfrac{-3 + 13}{10} = 1 \\ \\ 
x_2 = \dfrac{-3 - 13}{10} = -1,6
5(x - 1)(x + 1,6) > 0
(x - 1)(x + 1,6) > 0
x ∈ (-∞; -1,6) U (1; +∞)

(2x² - 3x + 1)(x - 3) ≥ 0
2x² - 3x + 1 = 0
D = 9 - 2·4 = 1

x_1 = \dfrac{3 + 1}{4} =1 \\ \\ 
x_2 = \dfrac{3 - 1}{4} = 0,5

2(x - 1)(x - 0,5)(x - 3) ≥ 0
(x - 1)(x - 0,5)(x - 3) ≥ 0
      -       0,5        +      1                  -             3        +
-------------• ---------------• --------------------------• -----------> x
x ∈ [0,5; 1] U [3; +∞)

x² - 2x - 15 ≥ 0 
x² - 2x + 1 - 4² ≥ 0
(x - 1)² - 4² ≥ 0 
(x - 1 - 4)(x - 1 + 4) ≥ 0
(x - 5)(x + 3) ≥ 0
x ∈ (-∞; -3] U [5; +∞)

\dfrac{2x + 3}{x + 2} \ \textless \ 1 \\ \\ 
 \dfrac{2x + 3}{x + 2} - 1 \ \textless \ 0 \\ \\ 
 \dfrac{2x + 3}{x + 2} - \dfrac{x+ 2 }{x + 2} \ \textless \ 0 \\ \\ 
 \dfrac{2x + 3 - x - 2 }{x + 2} \ \textless \ 0 \\ \\ 
 \dfrac{x + 1 }{x + 2} \ \textless \ 0 \\ \\ 
x \in (-2; \ -1)

\dfrac{(5x + 4)(3x - 2)}{x + 3} \leq \dfrac{(3x - 2)(x + 2)}{x - 1 } \\ \\ 
 \dfrac{(5x + 4)(3x - 2)}{x + 3} - \dfrac{(3x - 2)(x + 2)}{x - 1 } \leq 0 \\ \\ \\
 \dfrac{(5x + 4)(3x - 2)(x - 1)}{(x + 3)(x - 1)} - \dfrac{(3x - 2)(x + 2)(x + 3)}{(x - 1 )(x + 3)} \leq 0 \\ \\ \\
 \dfrac{(5x + 4)(3x - 2)(x - 1) - (3x - 2)(x + 2)(x + 3)}{(x - 1)(x + 3)} \leq 0

\dfrac{(3x - 2)((5x + 4)(x - 1) - (x + 2)(x + 3))}{(x- 1)(x + 3)} \leq 0 \\ \\ \dfrac{(3x - 2)(5x^2- 5x + 4x - 4 - (x^2 + 3x + 2x + 6) }{(x - 1)(x + 3)} \leq 0 \\ \\ \dfrac{(3x - 2)(5x^2 - x - 4 - x^2 - 5x - 6)}{(x - 1)(x + 3)} \leq 0 \\ \\ \dfrac{(3x - 2)(4x^2 - 6x - 10)}{(x - 1)(x + 3)} \leq 0 \\ \\ \dfrac{(3x - 2)(2x^2 - 3x - 5)}{(x - 1)(x + 3)} \leq 0

2x^2 - 3x - 5 = 0 \\ \\ 
D = 9 + 4 \cdot 5 \cdot 2 = 49 = 7^2 \\ \\ 
x_1 = \dfrac{3 + 7}{4} = 2.5 \\ \\ 
x_2 = \dfrac{3 - 7}{4} = -1

\dfrac{(3x - 2)(x - 2,5)(x + 1))}{(x - 1)(x + 3)} \leq 0 \\ \\ \\
 \dfrac{(x - \dfrac{2}{3})(x - 2,5)(x + 1) }{(x - 1)(x + 3)} \leq 0

Нули числителя: x = -1; 2/3; 2,5.
Нули знаменателя: x = -3; 1
 -   -3        +    -1     -         2/3      +          1       -             2,5      +
----°-------------• -------------• ----------------°-------------------• ------------> x
ответ: x ∈ (-3; -1] U [2/3; 1) U [2,5; +∞).

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Решите уравнение cos^2x+cosx=sin^2x
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Артем Уберт
mshelen732
shajmasha
Александра440
zvezda-71
смирнов1127
Yevgenii_Gurtovaya1532
oslopovavera
Anatolevich1506
avtalux527
alukyanov
Bolshakova Shigorina
grachevakaterina
stepanova-natalie
timpavilion23