б)a(n)=3n+9
a(1)=12
a(30)=99
S=(a(1)+a(30))/2*n=(12+99)/2*30=1665
Объяснение:
а)существует несколько решения этой задачи. Я предлагаю следующий. Рассмотрю весь набор не пусть чётных двузначных чисел как арифметическую прогрессию. Пусть (a)n - арифметическая прогрессия. Тогда a(1) = 11, a(2) = 13, d = a(2) - a(1) = 2.
Задача тогда сводится к тому. чтобы найти сумму n-первых членов данной арифметической прогрессии.
Всего двузначных нечётных чисел у нас 45. значит надо найти сумму 45 членов этой прогресии.
S(45) =(( 2a(1) + 44d)/2) * 45 =( 2*11+ 88)/2) * 45 = 2475. Вот мы и нашли сумму всех нечётных двузначных чисел.
Объяснение:
Собственная скорость Vc= х км/ч.
Против течения :
t₁ = S/(Vc- Vт) = 18 / (x-3) (ч.)
По течению:
t₂= S/ (Vc+Vт) = 48/ (x+3) (ч.)
Всего:
t₁+t₂=3 (ч.)
18/(х-3) + 48/(х+3) = 3 |× (x-3)(x+3)
18(x+3) + 48(x-3) = 3(x-3)(x+3)
18x+54 + 48x - 144= 3(x²-9)
66x -90 = 3x² - 27 |÷3
22x - 30 = x²-9
x²-9 -22x+30=0
x²-22x+21=0
D= (-22)² -4*1*21 = 484-84=400 ; √D= 20
x₁= (22 -20) /2 =2/2=1 - не удовл. условию, т.к. скорость лодки не может быть меньше течения реки
x₂= (22+20)/2= 42/2=21 (км/ч) Vc
ответ: Vc= 21 км/ч.
Поделитесь своими знаниями, ответьте на вопрос:
Выражение: (8a-b)² - (4a-b)(16 a+3b)