Y = x³ - 6x² - 15x - 2 1. Находим интервалы возрастания и убывания. Первая производная. f'(x) = 3x² - 12x - 15 Находим нули функции. Для этого приравниваем производную к нулю 3x² - 12x - 15 = 0 Откуда: x₁ = -1 x₂ = 5 (-∞ ;-1) f'(x) > 0 функция возрастает (-1; 5) f'(x) < 0 функция убывает (5; +∞) f'(x) > 0 функция возрастает В окрестности точки x = -1 производная функции меняет знак с (+) на (-). Следовательно, точка x = -1 - точка максимума. В окрестности точки x = 5 производная функции меняет знак с (-) на (+). Следовательно, точка x = 5 - точка минимума.
Lopatkin_Shchepak174
16.02.2022
1)2х²+4х-10=0 Делим всё на 2. x²+2x-5=0. квадратное уравнение вида ax²+bx+c=0,a=1,b=2, c=-5 D=b²-4ac=2²-4·1·(-5)=4+20=24. √D=√24=2√6 x₁=(-b+√D)/2a=(-2+2√6)/2=2(√6-1)/2=(√6-1)/1=√6-1 x₂=(-b-√D)/2a=(-2-2√6)/2=-2(√6+1)/2=-(√6+1), где x₁=√6-1 и x₂=-(√6+1) корни уравнения. Теперь находим произведение корней уравнения: x₁·x₂=(√6-1)·(-1)·(√6+1)=(√6²-1²)·(-1)=-(6-1)=-5 2) [(3/(x-3)-(3/x)]·x+3/9=[[3x-3(x-3)]·x]/(x-3)·x +3/9=раскрываем скобки и сокращаем=[3x-3x+9]/(x-3)·x +3/9=9/(x-3)+3/9=первую дробь умножаем на 9, вторую умножаем на (x-3) =(81+3x²-9x)/(x-3)x=(81+3x-9)/(x-3)= =(72-3x)/(x-3)=3(24-x)/(x-3) 3) 4√0.0016-(1/2)√0.04=4·√(0.04)²-(1/2)·√(0.2)²=4·0.04-0.2÷2=0.16-0.1=0.06
x = -3
ответ: -3
lg(2x-51) - lg(22-x) = 0
2x-51 = 22 -x
3x = 73
x =73/3
ответ: 73/3
2x - 5 > 1
2x > 6
x > 3
ответ: (3;+∞)