1. На первое место могут быть любой из 5 учеников, а на второе место - оставшиеся из 4 учеников. По правилу произведения могут распределиться 2 первых местах
ответ
2. На первое место можно использовать любую цифру из 4. Так как одна цифра уже использована, то остается 3 цифры, на второе место можно использовать любую цифру из 3, на третье место - оставшиеся 2 цифры, на последнее место По правилу произведения, составить четырехзначных чисел можно
ответ
3. На первое место могут быть любой из 6 учеников, а на второе место - оставшиеся из 5 учеников. По правилу произведения могут распределиться 2 первых местах
ответ
4. На первое место можно использовать любую цифру из 5. Так как одна цифра уже использована, то остается 4 цифры, на второе место можно использовать любую цифру из 4, на третье место - оставшиеся 3 цифры, на четвертое место - оставшиеся из 2 цифр, на последнее место По правилу произведения, составить четырехзначных чисел можно
ответ
Поделитесь своими знаниями, ответьте на вопрос:
1. доказать, что сумма квадратов пяти последовательных целых чисел не является квадратом целого числа. 2. доказать, что если р - простое число, большее или равное пяти, то остаток от деления р в квадрате на 12 равен 1.
2) Т.к. квадрат нечетного числа при делении на 4 дает остаток 1, то p²-1 делится на 4. Т.к. квадрат нечетного числа не кратного трем (а наше р не кратно 3) дает остаток 1, то p²-1 делится на 3. Значит, p²-1 делится на 12.