ответ:Извиняюсь что не в том порядке
Объяснение:
б) Используя cos (t)² = 1-sin (t)² запишем выражение в развёрнутом виде
1-sin (a)²/sin (a)+1
Использу а²-b²=(a-b)(a+b) разложим на множители выражение
(1-sin (a))*(1+sin(a))/sin(a)+1
Дальше мы можем сократить дробь на sin(a)+1
отсюда 1-sin(a)
a) Упростим выражение Sin^2 a/(1 + cos a).
Известно, что sin^2 a + cos^2 a = 1, тогда sin^2 a = 1 - cos^2 a. Подставим вместо sin^2 a выражение 1 - cos^2 a, тогда:
Sin^2 a/(1 + cos a) = (1 - cos^2 a)/(1 + cos a);
разложим числитель дроби на множители, используя формулу сокращенного умножения разности квадратов и получим:
(1^2 - cos^2 a)/(1 + cos a) = (1 - cos a) * (1 + cos a)/(1 + cos a);
Числитель и знаменатель дроби сокращаем на (1 + cos a) и тогда останется:
(1 - cos a) * 1/1 = 1 - cos a;
Значит, sin^2 a/(1 + cos a) = 1 - cos a.
Промежутки знакопостоянства - это промежутки, где функция принимает значения одного знака, т.е. те промежутки из области определения функции, где значения функции положительны или отрицательны, т.е. у > 0 и y < 0. Поэтому решим неравенства f(x) > 0 и f(x) < 0.
Т.к. функция f(x) = 2x - 5 - линейная и пересекает ось Ох в одной точке, то:
2х - 5 > 0,
2х > 5,
х > 2,5, т.е. f(x) > 0 при х ∈ (2,5; +∞),
тогда f(x) < 0 при х ∈ (-∞; 2,5).
ответ: f(x) > 0 при х ∈ (2,5; +∞), f(x) < 0 при х ∈ (-∞; 2,5).
Поделитесь своими знаниями, ответьте на вопрос:
При каком значении а уравнение (6х-1)^2+(8x+a)^2=(10x+1)^2 не имеет решений?
(8х+а)² = [(10х+1) - (6х-1)]·[(10х+1) + (6х-1)]
(8х+а)² = (4х+2)·16х
64x²+16ax+a² = 64x²+32x
16ax+a² = 32x
32x-16ax = a²
16x(2-a) = a²
Дробь не имеет смысла при а = 2.
Поэтому уравнение не имеет решения при а=2.