Для того, чтобы найти значение выражения а * ( а - 2 ) - ( а - 1 ) * ( а - 3 ) при а = 0,25, сначала выражение упростим, а затем подставим известное значение и получим:
а * ( а - 2 ) - ( а - 1 ) * ( а - 3 ) = a * a - 2 * a - ( a ^ 2 - 3 * a - 1 * a + 3 * 1 ) = a ^ 2 - 2 * a - ( a ^ 2 - 3 * a - a + 3 ) = a ^ 2 - 2 * a - ( a ^ 2- 4 * a + 3 ) ;
Раскрываем скобки. Так как, перед скобками стоит знак минус, то при ее раскрытии, знаки значений меняются на противоположный знак. То есть получаем:
a ^ 2 - 2 * a - ( a ^ 2- 4 * a + 3 ) = a ^ 2 - 2 * a - a ^ 2 + 4 * a - 3 = - 2 * a + 4 * a - 3 = 2 * a - 3 = 2 * 1 / 4 - 3 = 1 / 2 - 3 = - 5 / 2 = - 2.5 ;
ответ: 2,5.
1.а) Область определения находим из системы неравенств
х+44>0; 2х-22>0;
х>-44;х>22/2⇒x∈(11;+∞).
4а) ㏒₃(х-4)+㏒₃(х+7)=㏒₃26; ОДЗ уравнения х больше 4, (х-4)(х+7)=26;
х²+7х-4х-28-26=0; х²+3х-54=0; По теореме, обратной теореме Виета, х₁=-9∉ОДЗ, не является корнем. х₂=6
4в) ㏒²₂х-㏒₂х-30=0; ОДЗ уравнения х∈(0;+∞) Пусть ㏒₂х=у, тогда у²-у-30=0; по теореме, обр. теореме Виета, у₁=-5; у₂=6 тогда ㏒₂х=-5; х=2⁻⁵; х=1/32 -входит в ОДЗ, корень.
㏒₂х=6; х=2⁶=64- входит в ОДЗ, корень.
5а)㏒₁/₅(22х-2)≥0
ОДЗ неравенства 22х-2>0; x>1/11
Заменим 0=㏒₁/₅1, т.к. основание логарифма меньше 1, то 22х-2≤1
22х≤3; х≤3/22; с учетом ОДЗ решением неравенства будет х∈(1/11;3/11)
Поделитесь своими знаниями, ответьте на вопрос:
Верно ли, что: а)каждое рациональное число является действительным; б)каждое действительное число является рациональным; в)каждое иррациональное число является действительным; г)каждое действительное число является иррациональное?
Множество действительных чисел включает в себя два непересекающихся подмножества: рациональные числа и иррациональные.
Из этой мысли вытекают все ответы.