s2010av565
?>

Пусть a-чётное число. если а делится на простое число p то a-1 делится на p-1. докажите что a степень двойки.

Алгебра

Ответы

АркадьевичБундин789
  Заметим то что a-1 нечетное , но в то же время  p-1 четное , но 2x+1 \neq 0 \ mod \ 2y значит , это возможно когда p=2, тогда  a=2x=2n\\
 n  частное при делений на простое число , отсюда следует , что частное при делений a на  p , может быть четным и нечетным числом ,и оно согласуется со вторым условием  \frac{2x-1}{2-1} = 2x-1 ,то есть n = 2^{\alpha-1} подходит,значит  a=2^{\alpha}, но и походит другие числа ,содержащие множитель 2 
gresovanatalya

y = \frac{x - 1}{ x+ 1} \\

D(x) € R, кроме x = -1

следовательно, х= -1 точка разрыва и вертикальная асимптота.

определим четность или нечестность.

у(-х) =(-х-1) / (-х+1) => функция и не четная, и не нечетная

найдем нули функции.

х=0, y=-1

y=0, x=1.

Производная

 \frac{d}{dx} ( \frac{x - 1}{x + 1} ) = \frac{(x + 1) - (x - 1)}{ {(x + 1)}^{2} } = \frac{2}{ {(x + 1)}^{2} }

видно, что производная для все х больше нуля, следовательно, сама функция не имеет критических точек, и неизменно возрастает на всем определенном х.

иследуем поведение функции в точке разрыва и на бесконечности.

при х стремящимся к (+-) бесконечности, у стремится 1.

при х стремящимся к -1 слева, у стремится к бесконечности

при х стремящимся к -1 справа, у стремится к минус бесконечности

осталось построить


Исследуйте функцию f(x)= <img src= и начертите график" />
slspam

1)   x+y=1-z

   x^2+y^2=(1-z^2)=(1-z)*(1+z)

   x^3+y^3= (1-z^3)=(1-z)*( 1+z+z^2)  

Положим что  x≠-y , тогда возможно поделить  второе уравнение на первое.

Делим второе уравнение на  первое:

(x^2+y^2)/(x+y)= 1+z

cкладываем с:

(x^2+y^2)/(x+y)  +x+y=(1-z)+(1+z)=2

(2x^2+2y^2+2xy)/(x+y)=2

x^2+xy+y^2=x+y

xy= (x+y) -(x^2+y^2)=(1-z)-(1-z^2)= z^2-z

x^3+y^3=(x+y)*(x^2-xy+y^2)=(1-z)*(1-z^2 -(z^2-z) )=(1-z)*(1+z-2z^2)=

=(1-z)*(1+z+z^2)

(1-z)*(1+z-2z^2 -1-z-z^2)=0

(1-z)*(-3z^2)=0

либо z=1 ; либо  z=0

Если z=1,  то  x+y=0 ,что  противоречит предположению, значит z=0.

x+y=1  (x^2+2xy+y^2=1)

x^2+y^2=1

2xy=0

либо  x=0 , либо  y=0.

Таким  образом имеем решения:

(0;1;0) ;(1;0;0)    ( в скобках  (x;y;z) )

Либо, если  x=-y  → z=1 ,но  тогда  x^2+y^2=2x^2=0  →x=y=0 (0;0;1)

Таким образом решения- это все комбинации  единички и двух нулей:

ответ:  (0;0;1) ; (0;1;0) ; (1;0;0)

2) Похожий  принцип решения:

x+y=7/2 -z

1/x +1/y=7/2 -1/z=(x+y)/(xy)

xy=1/z

(7/2 -z)/(1/z) =7/2-1/z

(7/2-z)*z -7/2+1/z=0

тк  z≠0

(7-2z)*z^2 -7z +2=0

7z^2-2z^3 -7z+2=0

7z*(z-1) -2*(z^3-1)=0

7z*(z-1)  -2*(z-1)*(z^2+z+1)=0

(z-1)* (7z -2z^2-2z-2)=0

 z1=1

-2z^2+5z-2=0

2z^2-5z+2=0

D=25 -16=9=3^2

z=(5+-3)/4

z2=2 ; z3=1/2

1)   z1=1

    x+y=5/2  

    xy=1

Cистема теоремы Виета  имеет  два симметричных решения,что можно найти подбором:

x1=2;  y2=1/2

x2=1/2; y2=2

2)  z2=2

 Из  симметрии задачи относительно x,y,z ,тк решений аналогично так же 2 симметричных имеем:

x3=1 ;y3=1/2

x4=1/2 ;y3=1

3)  z3=1/2

 x5=1 ; y5=2

 x6=2 ; y6=1

ответ:  все перестановки  чисел  (1;1/2;2)

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Пусть a-чётное число. если а делится на простое число p то a-1 делится на p-1. докажите что a степень двойки.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Lorvi_Shevkunova849
Нана_Елена
Жукова_Петрович1281
Boris1247
Vetroff-11
saytru5850
Дмитрий Бундин
Решите ! 1)3х+5+(х+5)=(1-х+4) 2) 1-5х= - 6х+8
NarekAlekseevich779
achernakov
apioslk4533
Fateevsa9
horst58
Маринова
DodokhodzhaevVladimirovich
filimon211