Сколько точек пересечения не могут иметь графики функций у=k/x+c и y=mx+a Решение: Для начала ответим на прямо противоположный вопрос, а сколько точек пересечения могут иметь графики гиперболы у=k/x+c и прямой y=mx+a. Для этого надо решить систему уравнений {у = k/x+c {y = mx+a k/x + c = mx+a ОДЗ: x=/=0 Умножим обе части уравнения на х mx² + ax = k +cx mx² + (a-c)x - k = 0 Получили обычное квадратное уравнение Оно может иметь два решения, одно решение и не иметь решений. Поэтому график гиперболы и прямой может иметь пересечение в двух , одной точке или не иметь пересечений. Поэтому графики функций у=k/x+c и y=mx+a не могут иметь три и более точек пересечений. ответ: три и более трех точек пересечений.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Составьте числовое выражение значение которого равно -2, 5 используя при этом а)вычитание и деление б)сложение и вычитание
б). (19+7)-21.5=-2.5