Функция задана уравнением y = x² – 4x - 5
Это парабола ,ветви вверх. Область определения :х-любое, множество значений функции [ -9; +∞) ;
а) Найдите вершину параболы
х₀=-в/2а, х₀=-(-4)/2= 2 , у₀=2²-4*2 -5= -9 , ( 2; -9).
Тогда наименьшее значение функции у=-9 ( при х=2)
Наибольшего значения нет ;
b) В какой точке график данной функции пересекает ось ОY.
Точки пересечения с оу ( х=0)
у= 0²- 4*0-5=-5, Точка (0; -5).
c) Найдите точки пересечения графика функции с осью ОХ.
Точки пересечения с осью ох( у=0)
x²- 4x-5=0 , Д=36 , х₁=(4+6)/2=5, х₂=(4-6)/2=-1. Точки (5;0) , ( -1;0).
d) Запишите уравнение оси симметрии графика данной функции :
х=2.
e) Постройте график функции.Смотри ниже
f) Найдите промежутки возрастания убывания функции
Функция убывает при х≤ 2 ,
функция возрастает при x≥2;
Промежутки знакопостоянства функции :
+ . - .+
______(-1)_______(5)_______
у>0 при х <-1 и x>5
у<0 при -1 <х< 5 ;
Доп. точки у= x²- 4x-5:
х: -2 1 6
у: 7 -8 7
2
.
Объяснение:
В ней найдем строку с нужной нам функцией, то есть косинусом, а среди значений функции найдем указанное в условии значение, то есть – корень из 2 / 2. Теперь мы можем определить значение одного из аргументов, при котором косинус будет равен – корень из 2 / 2. Таким значением является угол 3 Пи / 4 или 135 градусов.
Поскольку функция косинус является периодичной, то данное значение будет не единственным. Период функции косинус равен 2 Пи, следовательно, все возможные решения данного уравнения опишутся множеством решений:
х = 3 Пи / 4 + 2 Пи k, k принадлежит множеству целых чисел.Можно уравнение решить через обратную функцию к косинусу. В таком случае:
х = ± arccos (– корень из 2 / 2) + 2 Пи k.
По свойству арккосинуса:
x = ± (Пи – arccos (корень из 2 / 2)) + 2 Пи k
x = ± (Пи – (Пи / 4)) + 2 Пи k
x = ± (3 Пи / 4) + 2 Пи k.
Поделитесь своими знаниями, ответьте на вопрос:
Найдите значение выражение (b-2)^2+2b(5b-2 при b=2 в корне