levsha-27509
?>

Расположить в порядке возрастания : 0, 4; √0, 4; √1/6

Алгебра

Ответы

nadezhda81
√1/6,√0,4, 0,4
qadjiyevaaynura
Решение графическое! точки пересечения графиков функций левой и правой частей уравнения соответствуют решениям уравнения!

график функции f(x)=99*sin(x) это растянутый вдоль оси OY в 99 раз график функции sin(x), нужно отметить, что функциия f(x) - нечётная функция и проходит через точку (0;0)

-99 \leq f(x) \leq 99

график функции g(x)=x - обычная себе прямая линия, с наклоном 45^0 к оси ОХ, также проходящая через точку (0;0)

из вышеизложенного, прямая линия функции g(x)=x будет пересекать "гребни" функции f(x), начиная с значения -99 и пока её значение не привысит 99, а это случиться, на промежутке x\in[-99;99]

на промежутке x\in[0;99] прямая линия пересекает только "положительные гребни" синусоиды при чем на один период есть только один положительный гребень, и каждый гребень эта прямая линия будет пересикать в двух точках. Сколькои таких гребней, столько и периодов на промежутке x\in[0;99]:
\frac{99}{2\pi}\approx15.8
на таком количестве периодов находиться 16 "положительных гребней", т.е. есть 32 точки пересечения

аналогично для промежутка  x\in[-99;0] (точки пересечения будут уже с "отрицательными гребнями" синусоиды) - 32 точки пересечения

но на промежутке x\in[-99;99] будет на одну точку пересечения меньше, потому как точка пересечения (0;0) учитывалась в обоих промежутках

ответ: 32*2-1=63
Сколько корней имеет уравнение 99sin(x)=x ?
alenih13
Для того, чтобы вершины были расположены по одну сторону от оси абсцисс, ординаты этих вершин должны быть одного знака
Пусть (x1,y1) - вершина y = x^2-4px+p
(x2,y2) - вершина y=-x^2+8px+4
1) y = x^2-4px+p
x1 = 4p / 2 = 2p
y(x1)=4p^2-8p^2+p=-4p^2+p
2) y = -x^2+8px+4
x2 = -8p/-2=4p
y(x2) = -16p^2+32p^2+4=16p^2+4
3) Получим систему
 -4p^2+p > 0
 16p^2+4 > 0

а) -4p^2+p > 0
p(-4p+1) > 0

p > 0                        p<0
-4p+1 > 0             -4p+1<0

p > 0                       p<0
p<1/4                      p>1/4

0 < p < 1/4             нет решений
б) 16p^2+4 > 0
4(4p^2+1)>0
4p^2+1>0 при x ∈ R
3) общее решение:
0<p<1/4

При всех p, принадлежащих данному промежутку, вершины парабол будут расположены по одну сторону от оси x (в данном случае - выше)
Если нужно конкретное значение, то, например p = 1/8

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Расположить в порядке возрастания : 0, 4; √0, 4; √1/6
Ваше имя (никнейм)*
Email*
Комментарий*