40. Для начала вычислим сколько нужно яиц, граммов масла, граммов сахара и граммов муки для приготовления 1 маффина. Для этого: - яйца - масла (округлим до 8,5) - сахара - муки (округлим до 21)
Теперь когда мы знаем сколько нужно продукции для приготовления 1 маффина, можем посчитать сколько их получится из данного набора ингредиентов: - макс. кол-во маффинов, на которые хватит яиц. - макс. кол-во маффинов, на которое хватит масла. - макс. кол-во маффинов, на которое хватит сахара. - макс. кол-во маффинов, на которое хватит муки.
В итоге мы видим, что яйца кончатся быстрее остальных продуктов, поэтому макс. кол-во маффинов, которое можно приготовить Свете = 40.
Femida76
15.03.2022
Далее в тексте будем подразумевать под биквадратным трёхчленом и его коэффициентами выражение где под подразумевается квадрат переменной т.е. а его корнями – квадраты искомых корней, если они различны, или его чётным корнем если корень биквадратного трёхчлена – единственный.
Наше уравнение вообще имеет решения только тогда, когда дискриминант биквадратного трёхчлена неотрицателен, при этом, в силу чётности биквадратного уравнения, удобно находить чётный дискриминант через половину среднего коэффициента и без множителей в последнем слагаемом, т.е. по формуле тогда Потребуем, чтобы откуда следует, что
Уравнение не может стать просто квадратным, оно всегда будет иметь старшей степенью 4, поскольку старший коэффициент фиксирован и равен единице. Но биквадратное уравнение может выродится, когда его дискриминант равен нолю, что происходит при а корень биквадратного трёхчлена станет чётным давая два искомых корня Это значение как раз уже и есть одно из искомых решений для параметра
Когда дискриминант больше нуля и биквадратное уравнение не вырождено, то квадратов искомых корней всегда будет два – левый и правый (меньший и больший), однако при некоторых обстоятельствах левый квадрат искомых корней будет отрицательным, а значит, не будет давать пару искомых корней. Среднеарифметическое квадратов искомых корней по теореме Виета, в применении к биквадратному уравнению, будет равно числу, противоположному половине среднего коэффициента, т.е. оно равно Отсюда следует, что правый квадрат искомых корней – всегда положителен, а значит, всегда даёт два корня при положительном дискриминанте.
Левый же квадрат искомых корней отрицателен тогда и только тогда, когда этот левый квадрат лежит левее оси ординат, т.е. левее точки А значит, значение всего трёхчлена взятое от должно давать отрицательное значение, т.е. располагается в нижней межкорневой дуге параболы биквадратного трёхчлена.
x>=1.2
x=2