Нужно заучить таблицу квадратов, хотя бы до 20^2 = 400, и извлекать корни.
1) √(16*25) = √16*√25 = 4*5 =. 20
2) √216 = √(36*6) = 6√6
3) 2√14 = √(2^2*14) = √(4*14) = √56
4) 6+ 4√2 = 4+ 4√2+ 2. = 2^2+ 2*2*√2+ (√2)^2 = (2+ √2)^2
5) 26 -15√3 = 8 +18 - 12√3 -3√3 = 2^3 - 3*2^2*√3 + 3*2*(√3)^2 - (√3)^3 = (2-√3)^3
6) (√2-1)*√(3-2√2) + 2√2 = (√2-1)*√(2-2√2+1) + 2√2 = (√2-1)*√(√2-1)^2 + 2√2 =
= (√2-1)(√2-1) + 2√2 = 2-2√2+1+2√2 = 3
7) 12/(3√2) = 6/√2 = 6*√2/(√2)^2 = 6√2/2 = 3√2
8) 4/(3-√15) + 4/(3+√15) = 4(3+√15)/(9-15) + 4(3-√15)/(9-15)=
= (12+4√15+12-4√15)/(-6) = 24/(-6) = -4
Нужно заучить таблицу квадратов, хотя бы до 20^2 = 400, и извлекать корни.
1) √(16*25) = √16*√25 = 4*5 =. 20
2) √216 = √(36*6) = 6√6
3) 2√14 = √(2^2*14) = √(4*14) = √56
4) 6+ 4√2 = 4+ 4√2+ 2. = 2^2+ 2*2*√2+ (√2)^2 = (2+ √2)^2
5) 26 -15√3 = 8 +18 - 12√3 -3√3 = 2^3 - 3*2^2*√3 + 3*2*(√3)^2 - (√3)^3 = (2-√3)^3
6) (√2-1)*√(3-2√2) + 2√2 = (√2-1)*√(2-2√2+1) + 2√2 = (√2-1)*√(√2-1)^2 + 2√2 =
= (√2-1)(√2-1) + 2√2 = 2-2√2+1+2√2 = 3
7) 12/(3√2) = 6/√2 = 6*√2/(√2)^2 = 6√2/2 = 3√2
8) 4/(3-√15) + 4/(3+√15) = 4(3+√15)/(9-15) + 4(3-√15)/(9-15)=
= (12+4√15+12-4√15)/(-6) = 24/(-6) = -4
Поделитесь своими знаниями, ответьте на вопрос:
При каком значении параметра а уравнение |x-4|-|x+4|=корень(a) имеет бесконечно много решений?
1)a=0
|x-4|-|x+4|=0
|x-4|=|x+4|
x-4=-x-4 U x-4=x+4
2x=0⇒x=0 U 0=8 нет решения
а=0 не удовл усл
2)a>0
a)x<-4
4-x+x+4=√a
8=√a
При а=64 x∈(-∞;-4)
b)-4≤x≤4
4-x-x-4=√a
-2x=√a
x=-√a/2
-4≤-√a/2≤4
-8≤√a≤8
При а∈(0;64] x∈[-4;4]
c)x>4
x-4-x-4=√a
-8=√a
нет решения
ответ a∈(0;64] x∈(-∞;4]