aluka
?>

Для перевозки 5 тонн груза на 350 км можно воспользоваться услугами одной из трех транспортных компаний . каждая компания предлагает один вид автомобилей. сколько рублей будет стоит наиболее дешевый вариант перевозки. компания а - 80 рублей за 10 км (грузовик поднимает 1, 6т); компания б - 110 рублей за 10 км (грузовик 2.2 т); компания в - 170 рубллей за 10 км (грузовик 3, 4 т)

Алгебра

Ответы

Yevgeniya Bessonov
350÷10=35 (отрезков) пути длиной 10 км каждый. i случай (компания a): 1) 5÷1,6≈3,125=4  (грузовиков) необходимо для перевозки груза, воспользовавшись услугами компании a. 2) 35*80*4=11200 (руб) необходимо заплатить транспортной компании a для перевозки 5 тонн груза на 350 км. ii случай (компания б): 1) 5÷2,2≈2,27=3 (грузовика)  необходимо для перевозки груза, воспользовавшись услугами компании б.2) 35*110*3=11550 (руб)  необходимо заплатить транспортной компании б  для перевозки 5 тонн груза на 350 км.iii случай (компания в): 1) 5÷3,4≈1,47=2 (грузовика)  необходимо для перевозки груза, воспользовавшись услугами компании в.2) 35*170*2=11900 (руб)  необходимо заплатить транспортной компании в  для перевозки 5 тонн груза на 350 км.дешевле всего будет воспользоваться услугами компании a.  ответ: компания а
Sergei_sergei
Найдем экстремумы f'(x)=x²-1 f'(x)=0 x²-1=0 x²=1 x1=1 x2=-1 рассмотрим знаки производной на интервалах 1) х∈(-∞; -1) возьмем какое либо число из этого интервала и подставим в производную например х=-2 f'=4-1=3 > 0 значит на этом интервале функция возрастает. также сделаем на других интервалах 2) х∈(-1; 1) x=0 f'=0-1=-1< 0 f убывает 3) х∈(1; +∞) x=2 f'=4-1=3 > 0 f возрастает значит в точке -1 максимум  в точке х=1 минимум f(-1)=-1/3+1=2/3 f(1)=1/3-1=-2/3 точка пересечения с осью ох х=0 у=0 
samsludmila
Дана функция: y = -x^4 + 2x^2 + 3при построении графиков функций  можно примерно придерживаться следующего плана:   1. найти область определения функции и область значений функции, выявить точки разрыва, если они есть. ограничений нет: функция определена и непрерывна на всей числовой прямой, отсутствуют вертикальные асимптоты и точки разрыва функции. область значений определится после нахождения экстремумов. 2. выяснить, является ли функция четной или нечетной. проверим функцию -  четна или нечетна с соотношений f(x)=f(-x) и f(x)=-f(-x).  так как переменная в чётных степенях, то функция чётная. 3. выяснить, является ли функция периодической - нет. 4. найти точки пересечения графика с осями координат (нули функции). точка пересечения графика функции с осью координат оу: график пересекает ось y, когда x равняется 0: подставляем x=0 в -x^4+2x^2+3. у =-0^4+2*0^2+3 = 3, результат: y=3. точка: (0; 3). точки пересечения графика функции с осью координат ох: график функции пересекает ось x при y=0, значит, нам надо решить уравнение: -x^4+2x^2+3 = 0. делаем замену х^2 = t и получаем квадратное уравнение: -t^2+2t+3 = 0. квадратное уравнение, решаем относительно t:   ищем дискриминант: d=2^2-4*(-1)*3=4-4*(-1)*3=)*3=*3)=)=4+12=16; дискриминант больше 0, уравнение имеет 2 корня: t_1=(√16-2)/(2*(-1))=(4-2)/(2*(-1))=2/(2*(-1))=2/(-2)=-2/2=-1; t_2=(-√16-2)/(2*(-1))=(-4-2)/(2*(-1))=-6/(2*(-1))=-6/(-2)=/2)=)=3. первый корень отбрасываем, так как квадрат х не может быть отрицательным числом. находим 2 точки пересечения графика с осью ох: х = √3 и х = -√3. 5. найти асимптоты графика - их нет, так как все пределы при х⇒∞ равны ∞. 6. вычислить производную функции f'(x) и определить критические точки. y' = 4x³ + 4x = -4x(x² - 1). приравниваем нулю: -4x(x² - 1) = 0. получаем 3 критические точки: х = 0,  х = 1 и х = -1. 7. найти промежутки монотонности функции. получили 4 промежутка: (-∞; -1), (-1; 0), (0; 1) и (1; +∞). 8. определить экстремумы функции f(x). где производная положительна - функция возрастает, где отрицательна - там убывает. точки, в которых происходит смена знака и есть точки экстремума - где производная с плюса меняется на минус - точка максимума, а где с минуса на плюс - точки минимума. x =    -2        -1      -0,5      0      0,5      1        2  y' =    24        0      -1,5        0      1,5      0      -24.имеем: 2 максимума: (-1; 4) и (1; 4) и локальный минимум (0; 3).              4 промежутка монотонности:               - возрастание (-∞; -1) и (0; 1),              - убывание      (-1; 0) и (1; +∞).теперь определилась область значений функции: (-∞; 3].9. вычислить вторую производную f''(x) = -12x^2+ 4. приравниваем нулю: -12x^2+ 4 = -12(x^2- (1/3)) = 0. имеем 2 точки перегиба: х = 1/√3 и -1/√3. 10. определить направление выпуклости графика и точки перегиба. где вторая производная меньше нуля, там график функции выпуклый, а где больше - вогнутый. x =    -1          -0,57735        0          0,57735        1  y'' =  -8                0              4                0              -8.график выпуклый на промежутках (-∞; (-1/√3)) и ((1/√3); +∞),              вогнутый на промежутке (-1/√3) (1/√. построить график, используя полученные результаты исследования. дан в приложении.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Для перевозки 5 тонн груза на 350 км можно воспользоваться услугами одной из трех транспортных компаний . каждая компания предлагает один вид автомобилей. сколько рублей будет стоит наиболее дешевый вариант перевозки. компания а - 80 рублей за 10 км (грузовик поднимает 1, 6т); компания б - 110 рублей за 10 км (грузовик 2.2 т); компания в - 170 рубллей за 10 км (грузовик 3, 4 т)
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

olgakuz00261
Volochaev
alenkadon6
luxoutlet
natachi
deputy810
me576
alesia1986
asparinapti39
alex6543213090
people33
verich
alyonazharikowa4
НиканоровСалиев675
scraer198258