An-solomon
?>

Найти декартовые координаты заданной точки m(2п\3)

Алгебра

Ответы

afoninia

координаты 

mariy-y34
1)tgx·sin²y·dx+cos²x·ctgy·dy=0 - уравнение с разделяющимися переменными.(tgxdx/cos²x)=-ctgydy/ sin²yинтегрируем∫(tgxdx/cos²x)=-∫ctgydy/ sin²yили∫tgxd(tgx)=∫ctgyd(ctg y) tg²x/2=ctg²y/2+силиумножим на 2 и обозначим с=2с tg²x=ctg²y+со т в е т. tg²x=ctg²y+с2) уравнение, допускающее понижение порядка.замена переменнойy`=zy``=z`z`-hz=0уравнение с разделяющимися переменнымиdz/dx=hz⇒  dz/z=hdxинтегрируем∫( dz/z)=∫hdx; ln|z|=hx+cz=e^(hx+c)=c₁eˣy`=c₁eˣ- уравнение с разделяющимися переменнымиу=с₁eˣ+c₂о т в е т.  у=с₁eˣ+c₂ 3) уравнение второго порядка с постоянными коэффициентами. составляем характеристическое уравнение k²+2k+5=0 d=4-4·5=-16 √d=4i k₁,₂=(-2±4i)/2=-1 ±2iобщее решение имеет виду=e⁻ˣ(с₁cos2β+c₂sin2β)о т в е т.  у=e⁻ˣ(с₁cos2β+c₂sin2β)
daarisgoy
(x+63)+x=129                                                                                                    2x=129-63  2x=66                                                                                                                x=66: 2                                                                                                            х=33                                                                                                                33+63=96                                                                                                          ответ: второе число меньше первого

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найти декартовые координаты заданной точки m(2п\3)
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

platonovkosty
Bi-1704
lika080489
vse-v-sad-sdesign
salesrawtogo
Голубева1440
okovyrova1
kazan-ugoop36
BelozerovaGeller648
drozd228758
ska67mto3983
Жукова_Петрович1281
annarom1306
uzunanna19922488
German