Маркина Ворошилина
?>

Побудуйте графік функцій у=3х

Алгебра

Ответы

chikunova87194

Объяснение:


Побудуйте графік функцій у=3х
bichkowa-oksana
Сходимость ряда

Признак сходимости знакочередующихся рядов (признак Лейбница):

 Пусть имеется ряд

\sum\limits_{n=1}^{\infty}a_n

 Тогда, если выполнены условия:

Ряд является знакочередующимся. Члены ряда убывают по модулю  \lim\limits_{n\to \infty}|a_n|=0

то ряд сходится.

1) Чередование знаков

 Ряд является знакочередующимся, т.к. присутствует множитель (-2)^{n+1}

2) Убывание по модулю

\lim\limits_{n\to \infty}|\frac{(-2)^{n+1}}{2+3^n} |=\lim\limits_{n\to \infty}\frac{2^{n+1}}{2+3^n}=[\frac{\infty}{\infty} ]

 Неопределенность вида "бесконечность делить на бесконечность" решим по правилу Лопиталя

\lim\limits_{n\to \infty}\frac{2^{n+1}}{2+3^n}=\lim\limits_{n\to \infty}\frac{(2^{n+1})'_}{(2+3^n)'}=\lim\limits_{n\to \infty}\frac{2^{n+1}\cdot ln\,2}{3^n\cdot ln\,3}=\frac{2ln\,2}{ln\,3} \lim\limits_{n\to \infty}\frac{2^n}{3^n}=\frac{2ln\,2}{ln\,3} \lim\limits_{n\to \infty}(\frac{2}{3})^n=0

 Таким образом, ряд сходится

Тип сходимости

 Сходящийся ряд  \sum\limits_{n=1}^{\infty}a_n называют абсолютно сходящимся, если сходится ряд \sum\limits_{n=1}^{\infty}|a_n|.

 Сходимость такого ряда можно определить с предельного признака Даламбера

\lim\limits_{n\to \infty}\frac{|a_{n+1}|}{|a_n|} =\lim\limits_{n\to \infty}\frac{2^{n+2}}{2+3^{n+1}}:\frac{2^{n+1}}{2+3^{n}} =\lim\limits_{n\to \infty}\frac{2^{n+2}}{2+3^{n+1}}\cdot\frac{2+3^{n}}{2^{n+1}} =2\lim\limits_{n\to \infty}\frac{2+3^{n}}{2+3^{n+1}}=[\frac{\infty}{\infty} ]

 Неопределенность вида "бесконечность делить на бесконечность" решим по правилу Лопиталя

2\lim\limits_{n\to \infty}\frac{2+3^{n}}{2+3^{n+1}}=2\lim\limits_{n\to \infty}\frac{(2+3^{n})'}{(2+3^{n+1})'}=2\lim\limits_{n\to \infty}\frac{3^n\cdot ln\,3}{3^{n+1}\cdot ln\,3} =2\lim\limits_{n\to \infty}\frac{3^n}{3^{n+1}}=\frac{2}{3}

 Ряд сходится по признаку Вейерштрасса, следовательно исходный ряд сходится абсолютно.

evgeniishulov4696

ответ:   x_0=5  .

Угловой коэффициент прямой  у=2х-2  равен  k=2 . Если касательная параллельна этой прямой или совпадает с ней , то их угловые коэффициенты равны.

Угловой коэффициент касательной к графику функции  y=f(x) равен значению производной в точке касания, то есть   k=f'(x_0)  .

На оси ординат находим значение у=2, проводим прямую, параллельную оси ОХ, и находим на графике функции точку М  - точку пересечения графика с прямой у=2.

Далее Находим абсциссу точки М . Это и будет абсцисса точки, в которой касательная к графику функции y=f(x) параллельна прямой y=2x-2 или совпадает с ней.

Координаты точки М(5;2) , значит  x_0=5  .


На рисунке изображен график производной функции f(x). Найдите абсциссу точки, в которой касательная

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Побудуйте графік функцій у=3х
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

dddddd68
milanmilan8672
Svetlana1877
Хасанбиевич Колесников716
Знайдіть корені рівняння x⁴-6x²+5=0
miha23727
paninsv
drozd228758
Dmitrievich-Telishev
dimaproh
Iprokopova81
Boris1247
bar02
frame45
sergeev-alp5
Stryapunina