Dmitrii1763
?>

Докажите, что значение многочлена 3n^2-3n делиться на 6 при любом целом значении переменной n

Алгебра

Ответы

mistersoshnev354
Разложим многочлен 3n²-3n на множители:
3n²-3n=3n(n-1)
Чтобы данное число делилось на 6, должны быть соблюдены два условия: оно должно быть чётным и делиться на три.
1) n(n-1) - произведение двух последовательных целых чисел, следовательно, одно из них обязательно чётно;
2) Одним из множителей является число 3, следовательно всё число делится на 3.
Итак, доказано, что многочлен 3n²-3n делится на 6
megapolisgroup
1) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует
(x - 1)^2*(x + 2) = 0 
(x - 1)^2 = 0 
x - 1 = 0 
x = 1 

x + 2 = 0 
x = - 2

2) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует
(x^2 - 1)(x - 3) = 0
x^2 = 1 
x₁ = 1 
x₂= - 1;

x - 3 = 0 
x₃ = 3 

3) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует
(x - 4)^2*(x - 3) = 0
x - 4 = 0 
x = 4 

x - 3 = 0
x = 3 

4) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует
(x^2 - 4)(x + 1) = 0

x^2 = 4 
x₁ = 2;
x₂ = - 2

x + 1 = 0 
x₃ = - 1 
tefdst
Для начала, можно посмотреть несколько последовательных степеней двойки:
1       2
2      4
3      8
4     16
5    32
6    64
7   128
8  256
9   512
Как видим, последняя цифра меняется так:  2, 4, 8, 6.
А далее эта последовательность повторяется. То есть имеем повторяющуюся последовательность из четырёх цифр.
Чтобы понять, на какую из этих цифр заканчивается 2^2015, мы разделим 2015 на 4.    Получим 503 и остаток 3.

Чтобы далее было понятно, рассмотрим варианты:
1) если бы разделилось нацело (как, например, четвёртая степень), то число бы оканчивалось на шесть (смотри выше посчитанные степени)
2) если был бы остаток 1 (как, например, для пятой степени), то число бы оканчивалось на 2
3) если был бы остаток 2 (как, например, для шестой степени), то число бы оканчивалось на 4
4) а если остаток 3 (как, например, для седьмой степени), то число будет оканчиваться на 8

Соответственно, последняя цифра числа 2^2015  будет восемь.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Докажите, что значение многочлена 3n^2-3n делиться на 6 при любом целом значении переменной n
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Test Станислав
Log(1/2)(x^2+x)+1>=0решите
femida69
Салиев
zuzman601
katyn76
nevzorova
Olgera1
Yeroshkina411
lyukiss
chulki-kupit
samirmajbubi
pnatalia
sgritsaev
semenovakotya577
zaschitin48