A(n) = a1+(n-1)d d = (a(n)-a1)/(n-1) d = (1-(-21))/(12-1) d=22/11 = 2 ответ: d=2
vallium8354
21.12.2022
Интересная логическая задача. Известно: 1,4,5 - кедр, 2,3 - сандал. На шкатулках из кедра и сандала одинаковое количество ложных утверждений: 1 или 2. Надписи: На 1: 1 или 4. На 2: 1. На 3: 3 или 5. На 4: НЕ в 1, НЕ во 2 и НЕ в 3. На 5: На всех остальных ложь. На 5 написано, что на остальных ложь, поэтому на всех правды быть не может. 1) По 1 ложному утверждению. Тогда ложь на 5 шкатулке из кедра. На 1 и 4 правда. Если ложь на 2 шкатулке из сандала, то на 3 правда, но 1 и 3 противоречат друг другу. Если ложь на 3 шкатулке, то на 2 правда, но тогда 2 и 4 противоречат друг другу. Таким образом, по 1 ложному высказыванию быть не может. 2) По 2 ложных утверждения. Очевидно, что это 1,2,3,4 шкатулки, а на 5 правда. В этом случае есть единственное решение: клад во 2 шкатулке. 1) Не в 1 и не в 4. 2) Не в 1. 3) Не в 3 и не в 5. 4) В одной из шкатулок левее 4 клад есть ответ: клад во 2 шкатулке.
Yeremeev
21.12.2022
1 Выделим полный квадрат из выражения 4m²+3mn+2n²=(4m²+3mn+9n²/16)+2n²-9n²/16=(2m+3n/4)²+23n²/16 Квадрат любого числа положителен или равен 0,сумма положительных положительна.Значит знаменатель дроби положителен⇒5/(4m²+3mn+2n²)>0 2 a)5x²+20x+15=5(x²+4x+3) 2x³+9x²+10x+3=x²(2x+1)+4x(2x+1)+3(2x+1)=(2x+1)(x²+4x+3) (5x²+20x+15)/(2x³+9x²+10x+3)=5(x²+4x+3)/(2x+1)(x²+4x+3)=5/(2x+1) b)(n^4-9n^3+12n^2+9n-13)/(n^4-10n^3+22n^2-13n) = =[(n^4+n³)-(10n³-10n²)+(22n²+22n)_(13n+13)]/n(n³-10n²+22n-13)= =[n³(n+1)-10n(n+1)+22n(n+1)-13(n+1)]/n(n³-10n²+22n-13)= =(n+1)(n³-10n²+22n-13)/n(n³-10n²+22n-13)=(n+1)/n
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Найдите разность арифметической прогрессии (an), если а1=-21 и а12=1
d = (a(n)-a1)/(n-1)
d = (1-(-21))/(12-1)
d=22/11 = 2
ответ: d=2