<!--c-->
Преобразим заданное уравнение:
x3+12x2−27x=a
С производной построим график функции y=x3+12x2−27x.
1. Введём обозначение f(x)=x3+12x2−27x.
Найдём область определения функции D(f)=(−∞;+∞).
2. Найдем стационарные и критические точки, точки экстремума и промежутки монотонности функции:
f′(x)=(x3+12x2−27x)′=3x2+24x−27.
Внутренние точки области определения функции, в которых производная функции равна нулю, назывём стационарными, а внутренние точки области определения функции, в которых функция непрерывна, но производная не существует, —критическими.
Производная существует всюду в области определения функции, значит, критических точек у функции нет. Стационарные точки найдем из соотношения f′(x)=0:
3x2+24x−27=0|÷3x2+8x−9=0D4=(b2)2−ac=822+9=25x1,2=−b2±D4−−√a=−82±25−−√1=−82±5x1=−82−5=−9x2=−82+5=1
Критические и стационарные точки делят реальную числовую прямую на интервалы с неизменным знаком производной. Чтобы определить знак производной, достаточно вычислить значение производной функции в какой-либо точке соответственного интервала.
Если производная функции в критической (стационарной) точке:
1) меняет знак с отрицательного на положительный, то это точка минимума;
2) меняет знак с положительного на отрицательный, то это точка максимума;
3) не меняет знак, то в этой точке нет экстремума.
Итак, определим точки экстремума:
При x<−9 имеем положительную производную (на этом промежутке функция возрастает); при −9<x<1 имеем отрицательную производную (на этом промежутке функция убывает). Значит, x=−9 — точка максимума функции. При −9<x<1 имеем отрицательную производную, при
Объяснение:
1.
Сумма углов в треугольнике равна 180°
третий угол равен: 180° - 70° - 50° = 60°
2.
Так как один угол в прямоугольном треугольнике равен 90°, значит сумма двух оставшихся тоже 90°.
третий угол равен 90° - 45° = 45°
3.
Треугольник равнобедренный => приледажие к основанию углы равны. Находим:
(180°-80°)/2 = 50° каждый угол
4.
Также равнобедренный треугольник, значит второй угол у основания равен 15°
третий угол: 180° - 2*15° = 150°
5.
Угол, снежный с внешним углом, равен 180° - 120° = 60°, а так как треугольник равнобедренный => все углы по 60°
6.
Треугольник равнобедренный, углы у основания равны => угол ВАС = угол ВСА = 50°
угол АВС = 180° - 2*50° = 80°
Так как АD - биссектриса, значит угол DAC равен 50°/2=25°
Рассмотрим треугольник АDC: угол ADC = 180° - угол DAC - угол ВСА= 180°-25°-50°=105°
Поделитесь своими знаниями, ответьте на вопрос:
Решить неравенство log1/4 (3x-2) < -2
log1/4(3x-2)<log1/4(16)
3x-2>16
3x>18
x>6
ответ с учетом ОДЗ: x e (6; + беск.)