Nekrasova
?>

Люди решить ! a квадрат b-4abc-4bc квадрат

Алгебра

Ответы

viz-art-pnz1664
B(a^2-4ac+4c^2)=b(a-c)^2
Dushko
Если условие верно для всех натуральных чисел, то и для целых тоже: это следует, например, из формулы бинома Ньютона, (np+r)^11 дает такой же остаток при делении на n, что и r^11. Прибавляя нужное количество n, из любого отрицательное числа можно сделать положительное, и при этом делимость не нарушится.

Применим утверждение из условия на разных числах.
2 + (-1) + (-1) = 0 делится на n
2^11 - 1^11 - 1^11 = 2 * 3 * 11 * 31 - тоже должно делиться на n

3 + (-2) + (-1) = 0 делится на n
3^11 - 2^11 - 1^11 = 2 * 3 * 7 * 11 * 379 - тоже должно делиться на n.

Из примеров следует, что максимальное возможное значение n равно 2 * 3 * 11 = 66. Докажем, что 66 подходит.

Рассмотрим разность x^11 - x. Докажем, что при целых x она делится на 66.
x^11 - x = x (x^10 - 1) = x (x^5 - 1)(x^5 + 1)
* Делимость на 2: сомножители x, x^5 - 1 разной чётности, поэтому среди них одно чётное, второе нечётное. Значит. произведение делится на 2.
* Делимость на 3: заметим, что x^5 дает такой же остаток от деления на 3, что и x (это можно проверить только для чисел 1, 0, -1). Значит, всё произведение даёт такой же остаток, что и x (x - 1)(x + 1). Это произведение трёх последовательных чисел. Среди них обязательно найдётся делящееся на 3, тогда всё произведение делится на 3.
* Делимость на 11 гарантирует малая теорема Ферма (если p - простое число, то для любого целого a число a^p - a делится на p).
Итак, разность делится на 2, 3, 11, тогда и на 2 * 3 * 11 = 66.

Осталось заметить, что если a + b + c делится на 66, то и a^11 + b^11 + c^11 делится на 66, так как (a^11 + b^11 + c^11) - (a + b + c) = (a^11 - a) + (b^11 - b) + (c^11 - c) делится на 66, поскольку каждое слагаемое делится на 66.

ответ. n = 66.
topshopnails

1) Выражение x12+x22  получится, если взвести в квадрат обе части равенства x1+x2=-p;

(x1+x2)2=(-p)2;  раскрываем скобки: x12+2x1x2+ x22=p2;  выражаем искомую сумму: x12+x22=p2-2x1x2=p2-2q. Мы получили полезное равенство: x12+x22=p2-2q.

2) Выражение x13+x23 представим по формуле суммы кубов в виде:

(x13+x23)=(x1+x2)(x12-x1x2+x22)=-p·(p2-2q-q)=-p·(p2-3q).

Еще одно полезное равенство: x13+x23=-p·(p2-3q).

Примеры.

3) x2-3x-4=0. Не решая уравнение, вычислите значение выражения  x12+x22 .

Решение.

По теореме Виета сумма корней этого приведенного квадратного уравнения

x1+x2=-p=3, а произведение x1∙x2=q=-4. Применим полученное нами (в примере 1) равенство:

x12+x22=p2-2q. У нас -p=x1+x2=3 → p2=32=9; q=x1x2=-4. Тогда x12+x22=9-2·(-4)=9+8=17.

ответ: x12+x22=17.

4) x2-2x-4=0. Вычислить: x13+x23.

Решение.

По теореме Виета сумма корней этого приведенного квадратного уравнения x1+x2=-p=2, а произведение x1∙x2=q=-4. Применим полученное нами (в примере 2) равенство: x13+x23=-p·(p2-3q)=2·(22-3·(-4))=2·(4+12)=2·16=32.

ответ:  x13+x23=32.

Вопрос: а если нам дано не приведенное квадратное уравнение? ответ: его всегда можно «привести», разделив почленно на первый коэффициент.

5) 2x2-5x-7=0. Не решая, вычислить: x12+x22.

Решение. Нам дано полное квадратное уравнение. Разделим обе части равенства на 2 (первый коэффициент) и получим приведенное квадратное уравнение: x2-2,5x-3,5=0.

По теореме Виета сумма корней равна 2,5; произведение корней равно -3,5.

Решаем так же, как пример 3), используя равенство: x12+x22=p2-2q.

x12+x22=p2-2q=2,52-2∙(-3,5)=6,25+7=13,25.

ответ: x12+x22=13,25.

6) x2-5x-2=0. Найти:

Преобразуем это равенство и, заменив по теореме Виета сумму корней через -p, а произведение корней через q, получим еще одну полезную формулу. При выводе формулы использовали равенство 1): x12+x22=p2-2q.

В нашем примере  x1+x2=-p=5; x1∙x2=q=-2. Подставляем эти значения  в полученную формулу:

7) x2-13x+36=0. Найти:

Преобразуем эту сумму и получим формулу, по которой можно будет находить сумму арифметических квадратных корней из корней квадратного уравнения.

У нас  x1+x2=-p=13; x1∙x2=q=36. Подставляем эти значения в выведенную формулу:

Совет: всегда проверяйте возможность нахождения корней квадратного уравнения по подходящему ведь 4 рассмотренные полезные формулы позволяют быстро выполнить задание, прежде всего, в тех случаях, когда дискриминант — «неудобное» число. Во всех простых случаях находите корни и оперируйте ими. Например, в последнем примере подберем корни по теореме Виета: сумма корней должна быть равна 13, а произведение корней 36. Что это за числа? Конечно, 4 и 9. А теперь считайте сумму квадратных корней из этих чисел: 2+3=5. Вот так то!

 


Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Люди решить ! a квадрат b-4abc-4bc квадрат
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

VdoffOlga
Iprokopova81
Марина Федорович924
MariyaKhanbalaeva585
АлександровнаАслан1571
Дмитриевич Бирковская69
Алгебра шыныбеков 11-класс упражнение 2.32 2020​
Zukhra Andreevich1040
Varagyant
bogdanyukn562
ilplakhotin8734
ohussyev
spadikov
legezin
Viktorovna_Yurevna
v-shevlyakov7992