3) (2 - 3х)(5х - 3) - х(2 - х) = 3 - 12х²,
10х - 6 - 15х² + 9х - 2х + х² - 3 + 12х² = 0,
-2х² + 17х - 9 = 0,
2х² - 17х + 9 = 0,
a = 2, b = -17, c = 9;
4) (1 - 2x)(2x - 4) - 3(2 - x) = 3 - 9x²,
2x - 4 - 4x² + 8x - 6 + 3x - 3 + 9x² = 0,
5x² + 13x - 13 = 0,
a = 5, b = 13, c = -13;
5) (5 + 2x)(4x - 1) - 2(2 + 3x) = -13x²,
20x - 5 + 8x² - 2x - 4 - 6x + 13x² = 0,
21x² + 12x - 9 = 0,
7x² + 4x - 3 = 0,
a = 7, b = 4, c = -3;
6) (2 - 6x)(x - 4) - 3x(1 - x) = -22x²,
2x - 8 - 6x² + 24x - 3x + 3x² + 22x² = 0,
19x² + 23x - 8 = 0,
a = 19, b = 23, c = -8.
Определить промежутки монотонности функции, не используя производную функции.
y = (x² - x - 20)² - 18
=================================
Область определения функции D (y) = R
y = (x² - x - 20)² - 18
Квадратичная функция в квадратичной функции
y = f(z); z = g(x)
Чтобы найти промежутки монотонности квадратичной функции, нужно найти абсциссу вершины параболы.
- координата вершины
z = 0 - координата вершины параболы
x₁ = -4; x₂ = 5 - координаты вершин параболы
Таким образом, есть три точки, которые определяют промежутки монотонности функции y = (x² - x - 20)² - 18.
x₁ = -4; x₀ = 0,5; x₂ = 5
x ∈ (-∞; -4] - функция убывает : y(-5) > y(-4)
x ∈ [-4; 0,5] - функция возрастает : y(-4) < y(0)
x ∈ [0,5; 5] - функция убывает : y(1) > y(2)
x ∈ [5; +∞) - функция возрастает : y(5) < y(6)
Поделитесь своими знаниями, ответьте на вопрос:
A) 3cos 2x = 4 - 11 cos x b) cos 2x + 6 sin x - 5 = 0 c) cos 5x + sin x sin 4x = 0