вот прочитай теорию
Линейная функция — это функция, которую можно задать формулой
y=kx+m , где x — независимая переменная, k и m — некоторые числа.
Применяя эту формулу, зная конкретное значение x , можно вычислить соответствующее значение y .
Пусть y=0,5x−2 .
Тогда:
если x=0 , то y=−2 ;
если x=2 , то y=−1 ;
если x=4 , то y=0 и т. д.
Обычно эти результаты оформляют в виде таблицы:
x 0 2 4
y −2 −1 0
x — независимая переменная (или аргумент),
y — зависимая переменная.
Графиком линейной функции y=kx+m является прямая.
Чтобы построить график данной функции, нам нужны координаты двух точек, принадлежащих графику функции.
Построим на координатной плоскости xOy точки (0;−2) и (4;0) и
проведём через них прямую.
lineara1.png
Многие реальные ситуации описываются математическими моделями, представляющими собой линейные функции.
Пример:
на складе было 500 т угля. Ежедневно стали подвозить по 30 т угля. Сколько угля будет на складе через 2 ; 4 ; 10 дней?
Если пройдёт x дней, то количество y угля на складе (в тоннах) выразится формулой y=500+30x .
Таким образом, линейная функция y=30x+500 есть математическая модель ситуации.
При x=2 имеем y=560 ;
при x=4 имеем y=620 ;
при x=10 имеем y=800 и т. д.
Однако надо учитывать, что в этой ситуации x∈N .
Если линейную функцию y=kx+m надо рассматривать не при всех значениях x , а лишь для значений x из некоторого числового множества X , то пишут y=kx+m,x∈X .
Пример:
построить график линейной функции:
a) y=−2x+1,x∈[−3;2] ; b) y=−2x+1,x∈(−3;2) .
Составим таблицу значений функции:
x −3 2
y 7 −3
Построим на координатной плоскости xOy точки (−3;7) и (2;−3) и
проведём через них прямую.
Далее выделим отрезок, соединяющий построенные точки.
Этот отрезок и есть график линейной функции y=−2x+1,x∈[−3;2] .
Точки (−3 ; 7) и (2 ; −3) на рисунке отмечены тёмными кружочками.
lineara2.png
b) Во втором случае функция та же, только значения x=−3 и x=2 не рассматриваются, так как они не принадлежат интервалу (−3;2) .
Поэтому точки (−3 ; 7) и (2 ; −3) на рисунке отмечены светлыми кружочками.
lineara3.png
Рассматривая график линейной функции на отрезке, можно назвать наибольшее и наименьшее значения линейной функции.
В случае
a) y=−2x+1,x∈[−3;2] имеем, что yнаиб =7 и yнаим =−3 ;
b) y=−2x+1,x∈(−3;2) имеем, что ни наибольшего, ни наименьшего значений линейной функции нет, так как оба конца отрезка, в которых как раз и достигались наибольшее и наименьшее значения, исключены из рассмотрения.
В ходе построения графиков линейных функций можно как бы «подниматься в горку» или «спускаться с горки», т. е. линейная функция или возрастает, или убывает.
Если k>0 , то линейная функция y=kx+m возрастает;
если k<0 , то линейная функция y=kx+m убывает.
Объяснение:
ответ:1)Алгебраической называют дробью.
2)Тождество — это уравнение, которое удовлетворяется тождественно
3)число n (показывающее сколько раз повторяется множитель) – показателем степени
4)Квадратное уравнение называют приведенным, если его старший коэффициент равен 1.
5)Решить уравнение - значит найти все его корни или установить, что их нет.
6)Деление числителя и знаменателя на их общий делитель, отличный от
единицы, называют сокращением дроби.
7)при умножении ( делении ) числителя и знаменателя на одно и то же выражение ( число) получившаяся дробь = исходной
8)числители перемножаются отдельно
отдельно знаменатели
полученную дробь если это возможно сокращают
пример
2/3* 3/4 = (2*3)/(3*4)=6/12=1/2 (произвели сокращение на 6
9)Вам известно, что значение обыкновенной дроби не изменится, если ее числитель и знаменатель одновременно умножить или разделить на одно и то же отличное от нуля число.
10) Сложение и вычитание алгебраических дробей c одинаковыми
знаменателями выполняется по тому же правилу, что и с обыкновенными
дробями:
аd + bd – cd = a+b−cd .
11) Нам известно, что дробь 34 равна частному 3 : 4 ,
значит, выражение ( 14+ 15) : ( 13− 16) = ( 14+ 15)( 13− 16) .
Частное двух чисел или выражений, в котором знак деления
обозначен чертой, называют дробным выражением.
Найдем значения выражений:
а) ( 14+ 15)( 13− 16) = ( 520+ 420)( 26− 16) = ( 920)( 16) = 920 : 16 =
= 920• 61 = 5420 = 2 710 = 2,7
12)Пусть a0 и a1 - натуральные числа. Для нахождения их наибольшего общего делителя используется алгоритм Евклида [1] последовательного деления с остатком: a0=a0a1+a2, a1=a1a2+a3, a2=a2a3+a4, … ,где натуральные числа a0,a1,a2, … суть неполные частные. Это алгоритм разложения числа a =a0/a1 в правильную цепную дробь, и он применим к любым вещественным числам a. При этомa0=[a], где [a] - целая часть числа a, a1=[1/(a-a0)], … , т.е.
a=a0+ 1a1+ 1a2+ 1a3+ ···,
13)http://school.xvatit.com/images/9/92/11-06-34.jpg
14)Складываются показатели степеней при УМНОЖЕНИИ степеней с одинаковыми основаниями.
2^3+2^5=8+32=40.
Подробнее - на -
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
Разложите на множители: a)4a-4-a^3+a^2 б)3b^3+3b^2-3b-3
3b³+3b²-3b-3=3b²(b+1)-3(b+1)=(b+1)(3b²-3)=
=3.(b+1)(b²-1)=3.(b+1)(b+1)(b-1)=3.(b-1)(b+1)²