ams-sim
?>

Найдите корень уравнения x^2-(2x+1)^2=0

Алгебра

Ответы

zharovaleks
Не забудь поблагодарить. И если лучший то отметь)) 
Найдите корень уравнения x^2-(2x+1)^2=0
Найдите корень уравнения x^2-(2x+1)^2=0
mursvita943
X^2-2x^2+2*2x*1+1^2=0
x^2-2x^2+4x+1=0
-x^2+4x+1=0
a=-1,b=4,c=1
дискриминант=(b)^2-4ac
дискриминант = 4^2-4*(-1)*(1)= 16+4=20
а дальше по формулам дискриминанта
vladimirkirv
Х км/ч -собственная скорость теплохода, у км/ч - скорость течения реки.
(х+у) км/ч - скорость по течению, (х-у) км/ч - скорость против течения.
2(х+у) км - путь за 2 ч по течению,  3(х-у) км - путь за 3 ч против течения.
3(х+у) км - путь за 3 ч по течению,  2(х-у) км - путь за 3 ч против течения.
Учитывая соотношения, описанные в условии задачи, получим систему: \begin{cases} 2(x+y)+3(x-y)=85 \\ 3(x+y)-2(x-y)=30 \end{cases}
Умножаем первое уравнение на 3, а второе на 2 и вычитаем почленно:
\begin{cases} 6(x+y)+9(x-y)=255 \\ 6(x+y)-4(x-y)=60 \end{cases} \ \textless \ =\ \textgreater \ \begin{cases} 13(x-y)=195 \\ 3(x+y)-2(x-y)=30 \end{cases} \ \textless \ =\ \textgreater \ \\ \begin{cases} x-y=15 \\ 3(x+y)-30=30 \end{cases} \ \textless \ =\ \textgreater \ \begin{cases} x-y=15 \\ x+y=20 \end{cases}
Значит, 20 км/ч - скорость по течению, 15 км/ч - скорость против течения.
andrewa
X^2 - 2(a-1)x + (2a+1) = 0
1) Если оно имеет действительные корни, то D >= 0
D/4 = (b/2)^2 - ac = (a-1)^2 - 1(2a+1) = a^2 - 2a + 1 - 2a - 1 = a^2 - 4a >= 0
a(a - 4) >= 0
a <= 0 U a >= 4

Знаки корней.
2) Если a <= 0, то a - 1 < 0
x1 = (-b/2 - √(D/4)) / a = (a - 1 - √(a^2 - 4a)) / 1 = a - 1 - √(a^2 - 4a) < 0
x2 = (-b/2 + √(D/4)) / a = (a - 1 + √(a^2 - 4a)) / 1 = a - 1 + √(a^2 - 4a)
x2 может быть и больше и меньше 0.
a) a - 1 + √(a^2 - 4a) < 0
√(a^2 - 4a) < 1 - a
a^2 - 4a < a^2 - 2a + 1
2a > -1;
-1/2 < a <= 0
b) a - 1 + √(a^2 - 4a) > 0
Аналогично получаем
a < -1/2

3) Если a = -1/2, то c = 2a + 1 = 0, тогда
x^2 - 2(-1/2 + 1)x + 0 = 0
x^2 - 2(1/2)x = 0
x^2 - x = 0
x1 = 0, x2 = 1 > 0

4) Если a >= 4, то a - 1 > 0
x1 = (-b/2 - √(D/4)) / a = (a - 1 - √(a^2 - 4a)) / 1 = a - 1 - √(a^2 - 4a)
x1 может быть и больше и меньше 0.
x2 = (-b/2 + √(D/4)) / a = (a - 1 + √(a^2 - 4a)) / 1 = a - 1 + √(a^2 - 4a) > 0
a) a - 1 - √(a^2 - 4a) < 0
√(a^2 - 4a) > a - 1
a^2 - 4a > a^2 - 2a + 1
2a < -1
a < -1/2 - не подходит, потому что a >= 4
b) a - 1 - √(a^2 - 4a) >= 0
√(a^2 - 4a) <= a - 1
a^2 - 4a <= a^2 - 2a + 1
2a >= -1
a >= -1/2 - подходит для любых a >= 4
Значит, при любом a >= 4 оба корня положительны.
ответ: При -1/2 < a <= 0 будет x1 < 0, x2 < 0
При a = -1/2 будет x1 = 0, x2 > 0
При a < -1/2 будет x1 < 0, x2 > 0
При a >= 4 будет x1 > 0, x2 > 0
При 0 < a < 4 действительных корней нет.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найдите корень уравнения x^2-(2x+1)^2=0
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

IAleksandrovna45
zinasekina4
ekaterinaorl1998
Romanovna-yana
Державина
nadjasokolova2017
Nataliya Aleksandr1197
smirnovaL1286
rakitinat8
olimov9
urazmetova
IrinaSolodukhina1495
mail66
Овчинников_Грузман
7класс и я не знаю почему там смайлик
ivan-levermor