Решаем методом интервалов (чертим координатную прямую; отмечаем точки -2, 0, 2, выбивая 0, и справа налево рассставляем + и - чередуя на каждом интервале).
Т.к. по условию неравенство должно быть больше или равно 0, то берем те интервалы, где у нас +. Соответсвенно область определения функции: D. [-2;0)U[2;+бесконечно)
snopovajulia
23.06.2022
План действий такой: 1) ищем производную 2) приравниваем её к нулю и решаем получившееся уравнение 3) Смотрим: какие корни попали в указанный промежуток и ищем значения данной функции в этих точках и на концах данного отрезка; 4) пишем ответ. Поехали? 1) f'(x) = ((x² -8x)'(x+1) - (x² -8x)(x+1)')/(x+1)²= ((2x-8)(x+1) - (x²-8x))/(x+1)²= (2x² -8x +2x -8 - x² +8x)/(x+1)²= =(x² +2x -8) / (х+1)² 2)(x² +2x -8) / (х+1)² ⇒ x² +2x -8 =0, ⇒ х = - 4 и х = 2 3) Из найденных корней в указанный промежуток попало х = -4 а) х = -4 f(-4) = (-4)² -8*(-4) /(-4+1) = 48/(-2) = -24 б) х = -5 f(-5) = (-5)² -8*(-5) /(-5+1) = 65/(-4) = -13,75 в) х = -2 f(-2) = (-2)² -8*(-2)/(-2+1) = 20/(-1) = -20 4) maxf(x) = f((-2) = -20 minf(x) = f(-4) = -24
Для начала распишем как синус двойного угла:
sinx + cosx = 1 - 2*sinx*cos x
а теперь возьведем в квадрат обе части равенства:
(sinx)^2 + 2*sinx*cosx + (cosx)^2 = 1 - 4sinx*cos x + (2*sinx*cos x)^2
(sinx)^2 + (cosx)^2 = 1. Поэтому
2*sinx*cosx = - 4sinx*cos x + (2*sinx*cos x)^2. Отсюда
6*sinx*cosx - 4*(sinx*cos x)^2 = 0.
2*sinx*cosx(3 - 2*sinx*cos x) = 0.
Дальше все ясно. Ага?