Пусть а1- первый член арифметической прогрессии , d- разность прогрессии. Имеем систему из двух уравнений : а3+а9=6 и а3·а9=135/6 выразим а3 и а9 через первый член и разность прогрессии : а3=а1+2d и a9= a1+8d и подставим в первое уравнение системы , получаем : а1+2d+a1+8d=6 2a1+10d=6 a1+5d=3 a1=3-5d Сделаем подстановку во втором уравнении : (a1+2d)(a1+8d)=6 подставим а1=3-5d и получим (3-5d+2d)(3-5d+8d)=6 (3-3d)(3+3d)=6 9-9d²=6 9d²=3 d²=1/3 d=√1/3=√3/3 или d=-√1|3=√3|3 1) При d=√3/3 а1=3-5·√3/3 По формуле суммы арифметической прогрессии имеем : S15=(2(3-5√3/3)+√3/3·14)/2·15=(9-2√3)·5=45-10√3 2) При d=-√3/3 a1=3+5√3/3 S15=45-10√3
slipu817838
24.02.2023
Пусть а1- первый член арифметической прогрессии , d- разность прогрессии. Имеем систему из двух уравнений : а3+а9=6 и а3·а9=135/6 выразим а3 и а9 через первый член и разность прогрессии : а3=а1+2d и a9= a1+8d и подставим в первое уравнение системы , получаем : а1+2d+a1+8d=6 2a1+10d=6 a1+5d=3 a1=3-5d Сделаем подстановку во втором уравнении : (a1+2d)(a1+8d)=6 подставим а1=3-5d и получим (3-5d+2d)(3-5d+8d)=6 (3-3d)(3+3d)=6 9-9d²=6 9d²=3 d²=1/3 d=√1/3=√3/3 или d=-√1|3=√3|3 1) При d=√3/3 а1=3-5·√3/3 По формуле суммы арифметической прогрессии имеем : S15=(2(3-5√3/3)+√3/3·14)/2·15=(9-2√3)·5=45-10√3 2) При d=-√3/3 a1=3+5√3/3 S15=45-10√3
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Найдите корни уравнения х^2+5х-14=0, в ответе укажите меньший из них.
D= b^2-4ac= 25-4*1*(-14)= 25+56 = 81
x1= -7
x2=2
ответ: -7.
Если что-то не понятно,спроси.