iracaenko153
?>

Решите систему уравнений: x+3y=6 , 4 x-9y=3 .

Алгебра

Ответы

Чиркина999
Если что не понятно,пиши:)
Решите систему уравнений: x+3y=6 , 4 x-9y=3 .
katya860531
Х=6-3у
4х-9у=3
4(6-3у)-9у=3
24-12у-9у=3
-21у=-21
у=1
х=6-3*1=6-3=3
проверка
3+3*1=6
4*3-9*1=3
menametov

sin2x + 2sinx = 1 + cosx\\2sinxcosx+2sinx=1+cosx\\2sinx(1+cosx) = 1 + cosx\\(2sinx-1)(1+cosx) = 0\\sinx = \frac{1}{2} = x = (-1)^n\frac{\pi}{6} + \pi n, n \in Z\\ cosx = -1 = x = \pi + 2\pi m, m \in Z\\x \in [-4;-3]\\-4 < (-1)^n\frac{\pi}{6} + \pi n < -3\\-24 < (-1)^n\pi+6\pi n < -18\\

Подставляем n = 0 - неравенство не выполнено. n = 1 - неравенство не выполнено. Следовательно, при n ≥ 0 решений не будет, т.к.  (-1)^n + 6n - функция возрастающая.

Пусть n = -1, тогда выражение (-1)^n\pi + 6\pi n = -7\pi. Так как 3.14 < π < 3.15, то

-22.05  < -7π < -21.98. Очевидно, оно попадает на промежуток (-24; -18). Значит, при n = -1 решение есть на данном отрезке. Подставим n = -1 в серию корней:

x = (-1)^{-1}*\frac{\pi}{6} + \pi * (-1) = -\frac{\pi}{6} - \pi = -\frac{7}{6}\pi \approx -3.6652

Такими же рассуждениями приходим к тому, что n ≤ -2 так же не являются решениями.

Теперь рассмотрим вторую серию корней:

-4 < \pi + 2\pi m < -3\\

Тут совсем все просто: при m = 0, очевидно, неравенство не выполнено. При m = 1 так же. Так как выражение \pi + 2\pi m при возрастании m увеличивается, то и m ≥ 2 также не подходят.

Пусть m = -1, тогда:

-4 < \pi + 2\pi * (-1) < -3\\-4 < -\pi < -3\\-\pi \approx -3.1415926

Очевидно, что это так. Подставляя m = -2 понимаем, что число меньше -4.

Вопросы ниже в комменты.

ответ: x_1 = -\frac{7}{6} \pi\\x_2 = -\pi

dp199088206

Проведем доказательство индукцией по k.

База: k=1.

Имеем два промежутка: (-\infty,\; x_{1}] и [x_{1},\; \infty). Докажем, что существует представление f в виде g(x)=a_{1}|x-x_{1}|+a_{2}x+a_{3}. Для этого достаточно доказать, что функция g линейна на каждом из указанных промежутков и производная (угол наклона прямой) может принимать любые численные значения. Линейность функции очевидна. Рассмотрим g на промежутках:

(-\infty,\; x_{1}]: -a_{1}x+a_{1}x_{1}+a_{2}x+a_{3}=x(a_{2}-a_{1})+(a_{3}+a_{1}x_{1}) (за счёт независимости a_{3} (это число появляется только как свободный член) данное уравнение действительно описывает любую прямую.[x_{1},\; \infty): (a_{1}+a_{2})x+(a_{3}-a_{1}x_{1}) аналогично. При этом заметим, что если зафиксировать старший член и свободный в первом случае, то множество значений старшего и свободного члена во втором случае есть все множество действительных чисел.

Единственность представления доказывается просто. Пусть нашлись другие (возможно совпадающие, но не полностью) числа a_{1}',a_{2}',a_{3}'. Рассмотрим первый промежуток: x(a_{2}-a_{1})+(a_{3}+a_{1}x_{1})\equiv x(a_{2}'-a_{1}')+(a_{3}'+a_{1}'x_{1}), откуда \left \{ {{a_{2}-a_{1}=a_{2}'-a_{1}'} \atop {a_{3}+a_{1}x_{1}=a_{3}'+a_{1}'x_{1}} \right.. К этой системе добавятся условия из второго промежутка: \left \{ {{a_{1}+a_{2}=a_{1}'+a_{2}'} \atop {a_{3}-a_{1}x_{1}=a_{3}'-a_{1}'x_{1}}} \right.. Решая систему из первого уравнения первой системы и первого уравнения второй, получим a_{1}=a_{1}',\; a_{2}=a_{2}'. Используя это равенство для второго уравнения первой системы, приходим к равенству a_{3}=a_{3}'. Единственность доказана.

Переход: пусть для некоторого k выполнено условие задачи. Докажем, что оно выполнено и для k+1.

Рассмотрим функцию f(x)=a_{1}|x-x_{1}|+a_{2}|x-x_{2}|+...+a_{k}|x-x_{k}|+a_{k+1}x+a_{k+2}. По предположению индукции f можно представить в этом виде, причем единственным образом. Рассмотрим следующую функцию f^{*}(x)=a_{1}|x-x_{1}|+a_{2}|x-x_{2}|+...+a_{k+1}|x-x_{k+1}|+a_{k+2}x+a_{k+3}. Очевидно, что первые k чисел можно подобрать по предположению индукции, представив тем самым функцию f на промежутках (-\infty,\; x_{1}],\; [x_{1},\; x_{2}],\;...,\;[x_{k-1},\; x_{k}]. Оставшуюся часть [x_{k},\; x_{k+1}],\; [x_{k+1},\; \infty) представим, пользуясь базой индукции (при этом отсутствие минус бесконечности на ход решения не влияет). Докажем единственность. Пусть нашелся другой набор чисел a_{1}',\;a_{2}',\;...,\;a_{k+1}'. Введем функцию \varphi, которая описывается следующим графиком: она совпадает с f на первых k промежутках, а кусок прямой на k+1-ом продлевается в бесконечность (вправо). Тогда у \varphi два представления, что противоречит предположению индукции. Следовательно, a_{i}=a_{i}',\; 1\leq i\leq k, причем a_{k+1} может отличаться от a_{k+1}'. Тогда проведем те же рассуждения, взяв последние k чисел.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Решите систему уравнений: x+3y=6 , 4 x-9y=3 .
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

viktoritut
Tarakanova_pavel
NikonA83
artemkolchanov24
nadjasokolova2017
Вайнер
manuchar-formen2
Иванович621
Елена-Семенова
Imarmy67
drozd2008
drozd2008
iuv61
isinyakin
mariyachervonnaya44