kap393
?>

Разложить на множители 8mx^2-18my^2 ^- степень

Алгебра

Ответы

Kisuha8465
8mx²-18my²=2m*(4x²-9y²)=2m*(2x-3y)*(2x+3y)
yda659
y= \dfrac{2.5|x|-1}{|x|-2.5x^2} = \dfrac{2.5|x|-1}{-|x|(2.5|x|-1)}=- \dfrac{1}{|x|}

Строим гиперболу y=-\dfrac{1}{x} и затем верхнюю часть графика отобразить в нижнюю(отрицательную часть)

Область определения: \displaystyle \left \{ {{|x|\ne0} \atop {2.5|x|-1\ne0}} \right. ~~~\Rightarrow~~~~ \left \{ {{x\ne 0} \atop {x\ne \pm0.4}} \right.

Подставим у=кх в упрощенную функцию.

kx=- \dfrac{1}{|x|}              (*)

Очевидно, что при k=0 уравнение   (*) решений не будет иметь.

1) Если x>0, то kx^2=-1 и это уравнение решений не имеет при k>0(так как левая часть всегда положительно).

2) Если x<0, то kx^2=1 и при k<0 это уравнение решений не имеет.

Если объединить 1) и 2) случаи, то уравнение будет иметь хотя бы один корень.

Подставим теперь x=\pm0.4, имеем

k\cdot (-0.4)=- \dfrac{1}{0.4} \\ \\ k=6.25                                         k\cdot 0.4=- \dfrac{1}{0.4} \\ \\ k=-6.25

Итак, при k=0 и k=±6.25 графики не будут иметь общих точек

Постройте график функции у=2,5|х|-1/|х|-2,5х^2 и определитель,при каких значениях k прямая у=kx не и
Chopper-hinter25

Дана функцию f(x) = (x² - 3x) / (x - 4 ).

1 ) Найдите наибольшее и наименьшее значения функции на данном промежутке [-1; 3].  

2 ) Найдите промежутки возрастания и убывания и точки экстремума функции  .

ответ:  1 )   наибольшее 1  ;   наименьшее   - 0,8 .

2 )

Функция возрастает: x ∈( -∞ ; 2 ]  и x ∈[ 6 ;∞) .

Функция  убывает   x∈[2 ; 4) и x ∈(4 ;6] ;

Точки экстремумов:  x =2 точка максимума  и x = 6 точка минимума .

Объяснение:   D(f) : ( - ∞ ; 4)  ∪ (4 ; ∞ )                   [    R \ {4 }    ]

( u(x) /v(x) ) ' =  ( u'(x)*v(x) - u(x)*v'(x) ) / v²(x)

f ' (x) = ( (x² - 3x) / (x - 4 ) ) ' =( (x² - 3x) ' *(x - 4 ) - (x² - 3x)*(x-4) ' ) / (x-4)² =

( (2x - 3)*(x - 4 ) - (x² - 3x)* 1 ) / (x-4)²  = (x² - 8x +12) / (x-4)² =(x-2)(x-6) / (x-4)².

f ' (x)  = 0 ⇔(x-2)(x-6) / (x-4)² =0 ⇒ x₁ =2 ,  x₂ = 6 .

f'(x) не существует в точке x =4 , но в этой точке не существует и функция  

1)

* * *    x₂ = 6 ∉  [ -1 ; 3 ]      * * *

x₁=2 ∈ [ -1 ; 3 ]      f (x₁ ) =f (2 )  =(2² -3*2) /(2 - 4)  = 1 ;

f (a ) =f (-1 ) =( (-1)² -3*(-1) ) /( (-1) - 4)  = - 4/5 = - 0,8 ;

f(b) = f(3) = (3² - 3*3) /(3 -4) = 0

На  промежутке [-1;3]  наибольшее значение функции  равно 1 (если x=2 ),  наименьшее значение  -0,8 (если x= - 1 ) .  

2)

Промежутки возрастания и убывания и точки экстремума функции  .

f ' (x)  = 0 ⇔(x-2)(x-6) / (x-4)² =0        ⇒ x₁ =2 ,  x₂ = 6 .

Функция  возрастает  , если  f ' (x)  ≥ 0

Функция убывает  ,  если  f ' (x) ≤  0

По методу  интервалов

f '(x )  + + + + + + + + + + [ 2 ]  - - - - - - - - - - [ 6]  + + + + + + +

f (x )  ↑  (возрастает)            ↓ (убввает)             ↑  (возрастает)

Функция возрастает: x ∈( -∞ ; 2 ]  и x ∈[ 6 ;∞) .

Функция  убывает   x∈[2 ; 4) и x ∈(4 ;6] .

x =2  и   x=6 точки  экстремумов ( производная функции меняет знак при прохождения через эти точки )

x =2 точка максимума ,   f(2) = 1

x =6 точка  минимума  ,   f(6)=(6² -3*6) /(6 - 4)  =(36-18)/ 2=9.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Разложить на множители 8mx^2-18my^2 ^- степень
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Наталья
inulikb
ninakucherowa
Zakharov Lilit
thedoomsdatdcs36
Goldglobe
NikonA83
alexandrxzx09
laktionova-natal
tarasowamash4
yana799707
seregina19706867
avolodyaev
maisa1991
lshimina65