Вариант 1
1. y = x2 – 4x
2. y = – 2x2 + 4x + 6
3. y = – 0,5x2 – 3x – 2,5.
4. y = 0,25x2 + 3x + 5.
Вариант 2
1. y = x2 + 6x.
2. y = – 3x2 – 12x – 9.
3. y = 0,25x2 – x – 7,5.
4. y = – 0,25x2 + 2x + 5.
Вариант 3
1. y = – x2 + 2x + 8.
2. y = 2x2 – 12x + 10.
3. y = – 0,5x2 – 2x.
4. y = 0,25x2 + 2x – 5.
Вариант 4
1. y = – x2 + 6x – 8.
2. y = 3x2 + 12x + 9.
3. y = 0,5x2 – 4x.
4. y = – 0,25x2 – 3x – 5.
Вариант 5
1. y = x2 + 8x + 12.
2. y = – 2x2 + 8x.
3. y = 0,5x2 – x – 1,5.
4. y = – 0,25x2 – x + 3.
Вариант 6
1. y = x2 + 6x + 8.
2. y = – 3x2 + 6x.
3. y = 0,5x2 – 2x – 6.
4. y = – 0,25x2 – 2x + 5.
Вариант 7
1. y = x2 – 8x + 7.
2. y = – 2x2 – 12x – 10.
3. y = 0,5x2 + 2x.
4. y = – 0,25x2 + 3x – 8.
Вариант 8
1. y = x2 – 2x – 3.
2. y = – 2x2 + 8x – 6.
3. y = 0,5x2 + 4x + 6.
4. y = – 0,25x2 – 3x.
Вариант 9
1. y = – x2 – 4x + 5.
2. y = 2x2 – 4x – 6.
3. y = 0,5x2 + 3x + 2,5.
4. y = – 0,25x2 + 2x.
Вариант 10
1. y = – x2 – 2x + 8.
2. y = 2x2 + 8x + 6.
3. y = – 0,5x2 + 3x – 2,5.
4. y = 0,25x2 – 3x.
Вариант 11
1. y = – x2 + 4x.
2. y = 2x2 + 4x – 6.
3. y = – 0,5x2 – 3x + 3,5.
4. y = 0,25x2 – 2x – 5.
Вариант 12
1. y = x2 + 2x – 3.
2. y = – 2x2 – 8x.
3. y = – 0,5x2 + 3x + 3,5.
4. y = 0,25x2 – x – 8.
Вариант 13
1. y = – x2 – 6x.
2. y = 2x2 – 8x + 6.
3. y = – 0,5x2 + 4x – 6.
4. y = 0,25x2 + 3x + 8.
Вариант 14
1. y = – x2 – 4x – 3.
2. y = – 2x2 + 12x – 10.
3. y = 0,5x2 + x – 7,5.
4. y = 0,25x2 – 2x.
Вариант 15
1. y = – x2 + 6x – 5.
2. y = – 2x2 – 8x – 6.
3. y = 0,5x2 + 4x.
4. y = 0,25x2 – 3x + 8.
Вариант 16
1. y = – x2 – 2x.
2. y = – 3x2 + 12x – 9.
3. y = 0,5x2 – 3x – 3,5.
4. y = 0,25x2 + 2x + 3.
Вариант 17
1. y = – x2 + 4x – 3.
2. y = 2x2 – 4x.
3. y = 0,5x2 + 3x – 3,5.
4. y = – 0,25x2 – 2x – 3.
Вариант 18
1. y = x2 – 4x + 3.
2. y = 2x2 + 12x + 10.
3. y = – 0,5x2 – 4x.
4. y = – 0,25x2 + 3x – 5.
Вариант 19
1. y = x2 – 6x + 8.
2. y = – 2x2 – 4x + 6.
3. y = – 0,5x2 + 2x + 6.
4. y = 0,25x2 + 2x.
Вариант 20
1. y = x2 + 8x + 7.
2. y = 2x2 – 8x.
3. y = – 0,5x2 + x + 1,5.
4. y = – 0,25x2 – 3x – 8.
Примечание. Используя квадратный трехчлен любой из данных квадратичных функций, можно очень быстро составить задания для решения квадратных уравнений и квадратных неравенств, причем все они будут иметь целочисленные («хорошие») корни.
Приведем пример составления уравнений и неравенств для квадратного трехчлена x2 – 6x + 5, данного в формуле 7.
1) x2 – 6x + 5 = 0 (или – x2 + 6x – 5 = 0);
2) x2 + 6x + 5 = 0 (или – x2 – 6x – 5 = 0).
Всего можно составить 40 различных уравнений.
3) x2 – 6x + 5 < 0 (или – x2 + 6x – 5 > 0);
4) x2 – 6x + 5 > 0 (или – x2 + 6x – 5 < 0);
5) x2 – 6x + 5 Ј 0 (или – x2 + 6x – 5 і 0);
6) x2 – 6x + 5 і 0 (или – x2 + 6x – 5 Ј 0);
7) x2 + 6x + 5 < 0 (или – x2 – 6x – 5 > 0);
8) x2 + 6x + 5 > 0 (или – x2 – 6x – 5 < 0);
9) x2 + 6x + 5 Ј 0 (или – x2 – 6x – 5 і 0);
10) x2 + 6x + 5 і 0 (или – x2 – 6x – 5 Ј 0).
Всего можно составить 160 различных неравенств.
.
Поделитесь своими знаниями, ответьте на вопрос:
Найти целое число значение выражения (ctg10*tg40*ctg70)^2
Надо рассчитать значения функции при разных значениях аргумента:
х -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10
у -48 -35 -24 -15 -8 -3 0 1 0 -3 -8 -15 -24 -35 -48,
нанести эти точки на графике и соединить линией.
График пересекает ось Y, когда x равняется 0: подставляем x=0 в -x^2+6*x-8.
Результат: y=-8. Точка: (0, -8)
График функции пересекает ось X при y=0, значит нам надо решить уравнение:-x^2+6*x-8 = 0 Решаем это уравнение и его корни будут точками пересечения с X:
x=2. Точка: (2, 0)x=4. Точка: (4, 0)Экстремумы функции:Для того, чтобы найти экстремумы, нужно решить уравнение y'=0 (производная равна нулю), и корни этого уравнения будут экстремумами данной функции:y'=-2*x + 6=0
Решаем это уравнение и его корни будут экстремумами:x=3. Точка: (3, 1)Интервалы возрастания и убывания функции:Найдем интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим на ведет себя функция в экстремумах при малейшем отклонении от экстремума:Минимумов у функции нетуМаксимумы функции в точках:3Возрастает на промежутках: (-oo, 3]Убывает на промежутках: [3, oo)Точки перегибов графика функции:Найдем точки перегибов для функции, для этого надо решить уравнение y''=0 - вторая производная равняется нулю, корни полученного уравнения будут точками перегибов указанного графика функции,
+ нужно подсчитать пределы y'' при аргументе, стремящемся к точкам неопределенности функции:y''=-2=0
Решаем это уравнение и его корни будут точками, где у графика перегибы: Нет решение уравнения. Вертикальные асимптоты графика функции:Горизонтальную асимптоту найдем с предела данной функции при x->+oo и x->-oo. Соотвествующие пределы находим:lim -x^2+6*x-8, x->+oo = -oo, значит горизонтальной асимптоты справа не существуетlim -x^2+6*x-8, x->-oo = -oo, значит горизонтальной асимптоты слева не существуетНаклонные асимптоты графика функции:Наклонную асимптоту можно найти, подсчитав предел данной функции, деленной на x при x->+oo и x->-oo. Находим пределы:lim -x^2+6*x-8/x, x->+oo = -oo, значит наклонной асимптоты справа не существуетlim -x^2+6*x-8/x, x->-oo = oo, значит наклонной асимптоты слева не существуетЧетность и нечетность функции:Проверим функци четна или нечетна с соотношений f(x)=f(-x) и f(x)=-f(x). Итак, проверяем:-x^2+6*x-8 = -x^2 - 6*x - 8 - Нет-x^2+6*x-8 = -(-x^2 - 6*x - 8) - Нетзначит, функция не является ни четной ни нечетной