а) Сумма равна 1, это одна возможная комбинация: {0} {1}, поэтому: б) Сумма равная 2, это ({0};{2}), можно было бы составить другой комбинацией, но у нас нет двух карточек с единицами, поэтому вероятность так же равна: в) Сумма равна 3, это ({0};{3}) или ({1};{2}) Вероятность равна: г) Сумма равна 6, это ({0};{6}) ({1};{5}) ({2};{4}) Вероятность равна: д) Сумма равна 9, это: ({0};{9}) ({1};{8}) ({2};{7}) ({3};{6}) ({4};{5}) Вероятность равна: Таким образом, можно заметить, что вероятность зависит только от кол-ва составлений данного числа другими числами с карточек.
Горностаева831
20.09.2021
I этап. Постановка задачи и составление математической модели.
Пусть собственная скорость катера х км/ч , а скорость течения реки у км/ч. Тогда расстояние , которое пройдет катер по течению реки 1,5(х+у) км . Расстояние , которое пройдет катер против течения реки 2,25(х-у) км (т.к. 2 ч. 15 мин. = 2 15/60 ч. = 2,25 ч.) Зная, что расстояние между пристанями составляет 27 км. Составим систему уравнений: {1.5(x+y) =27 {2.25(х-у) = 27 Полученная система уравнений - математическая модель задачи.
II этап. Работа с математической моделью. Решение системы уравнений: {1.5 x + 1.5y = 27 |×1.5 {2.25 x - 2.25y = 27
{2.25x + 2.25y = 40.5 {2.25x - 2.25y = 27 Метод алгебраического сложения. 2,25 х + 2,25у + 2,25х -2,25 у = 40,5 +27 4,5х = 67,5 х= 67,5 : 4,5 х= 15 Выразим из первого уравнения системы у через х : y=(27:1,5 ) - х= 18-х у=18-15=3
III этап. Анализ результата. Собственная скорость лодки 15 км/ч ; скорость течения 3 км/ч. Проверим решение: 1,5 (15+3) = 2,25(15-3) = 27 (км) расстояние между пристанями
ответ: 15 км/ч собственная скорость лодки , 3 км/ч скорость течения.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Найти сумму бесконечно убывающей прогрессии 1) q=1/3 b5=1/81 2)q= - 1/2 b4=1/8
2) b1=b4/q³=1/8*(-8)=-1, S=-1/(3/2)=-2/3.