Евгеньевич Балиловна1398
?>

Множество задано словесным описанием. задайте это множество, перечислив его элементы: цифры, которые больше 5

Алгебра

Ответы

Kochinev7
A=\{6,7,8,9\}

Вы написали цифры, я привел цифры. Если вы имели ввиду числа, то множество бесконечно, и его можно записать так:
A=\{x\in \mathbb R|x\ \textgreater \ 5\}=\{\ 6,7,8,9,10...\}
Vlad Petr531
Действительные числа
Множество действительных чисел - это вместе взятые множества рациональных и иррациональных чисел.

Действительное число или как его еще называют вещественное число - это любое положительное число, отрицательное число или нуль.

Действительные числа разделяются на рациональные и иррациональные.

Вещественные (действительные) числа - это своего рода математическая абстракция, служащая для представления физических величин. Такие числа могут быть интуитивно представлены как отношение двух величин одной размерности, или описывающие положение точек на прямой. Множество вещественных чисел обозначается и часто называется вещественной или числовой прямой. Формально вещественные числа состоят из более простых объектов таких, как целые и рациональные числа.

Множество действительных чисел обозначается - R
jardi

Начнем с принятых обозначений. Как известно, для обозначения множеств используются заглавные буквы латинского алфавита. Числовые множества, как частный случай множеств, обозначаются также. Например, можно говорить о числовых множествах A, H, W и т.п. Особую важность имеют множества натуральных, целых, рациональных, действительных, комплексных чисел и т.п., для них были приняты свои обозначения:

N – множество всех натуральных чисел;

Z – множество целых чисел;

Q – множество рациональных чисел;

J – множество иррациональных чисел;

R – множество действительных чисел;

C – множество комплексных чисел.

Отсюда понятно, что не стоит обозначать множество, состоящее, к примеру, из двух чисел 5 и −7 как Q, это обозначение будет вводить в заблуждение, так как буквой Q обычно обозначают множество всех рациональных чисел. Для обозначения указанного числового множества лучше использовать какую-нибудь другую «нейтральную» букву, например, A.

Раз уж мы заговорили про обозначения, то здесь напомним и про обозначение пустого множества, то есть множества, не содержащего элементов. Его обозначают знаком ∅.

Также напомним про обозначение принадлежности и непринадлежности элемента множеству. Для этого используют знаки ∈ - принадлежит и ∉ - не принадлежит. Например, запись 5∈N означает, что число 5 принадлежит множеству натуральных чисел, а 5,7∉Z – десятичная дробь 5,7 не принадлежит множеству целых чисел.

И еще напомним про обозначения, принятые для включения одного множества в другое. Понятно, что все элементы множества N входят в множество Z, таким образом, числовое множество N включено в Z, это обозначается как N⊂Z. Также можно использовать запись Z⊃N, которая означает, что множество всех целых чисел Z включает множество N. Отношения не включено и не включает обозначаются соответственно знаками ⊄ и ⊅. Также используются знаки нестрогого включения вида ⊆ и ⊇, означающие соответственно включено или совпадает и включает или совпадает.

Про обозначения поговорили, переходим к описанию числовых множеств. При этом затронем лишь основные случаи, которые наиболее часто используются на практике.

Начнем с числовых множеств, содержащих конечное и небольшое количество элементов. Числовые множества, состоящие из конечного числа элементов, удобно описывать, перечисляя все их элементы. Все элементы-числа записываются через запятую и заключаются в фигурные скобки, что согласуется с общими правилами описания множеств. Например, множество, состоящее из трех чисел 0, −0,25 и 4/7 можно описать как {0, −0,25, 4/7}.

Иногда, когда число элементов числового множества достаточно велико, но элементы подчиняются некоторой закономерности, для описания используют многоточие. Например, множество всех нечетных чисел от 3 до 99включительно можно записать как {3, 5, 7, …, 99}.

Так мы плавно подошли к описанию числовых множеств, число элементов которых бесконечно. Иногда их можно описать, используя все тоже многоточие. Для примера опишем множество всех натуральных чисел: N={1, 2. 3, …}.

Также пользуются описанием числовых множеств посредством указания свойств его элементов. При этом применяют обозначение {x| свойства}. Например, запись {n| 8·n+3, n∈N} задает множество таких натуральных чисел, которые при делении на 8 дают остаток 3. Это же множество можно описать как {11,19, 27, …}.

В частных случаях числовые множества с бесконечным числом элементов представляют собой известные множества N, Z, R, и т.п. или числовые промежутки. А в основном числовые множества представляются как объединение составляющих их отдельных числовых промежутков и числовых множеств с конечным числом элементов (о которых мы говорили чуть выше).

Покажем пример. Пусть числовое множество составляют числа −10, −9, −8,56, 0, все числа отрезка [−5, −1,3] и числа открытого числового луча (7, +∞). В силу определения объединения множеств указанное числовое множество можно записать как {−10, −9, −8,56}∪[−5, −1,3]∪{0}∪(7, +∞). Такая запись фактически означает множество, содержащее в себе все элементы множеств {−10, −9, −8,56, 0}, [−5, −1,3] и (7, +∞).

Аналогично, объединяя различные числовые промежутки и множества отдельных чисел, можно описать любое числовое множество (состоящее из действительных чисел). Здесь становится понятно, почему были введены такие виды числовых промежутков как интервал, полуинтервал, отрезок, открытый числовой луч и числовой луч: все они в купе с обозначениями множеств отдельных чисел позволяют описывать любые числовых множества через их объединение.

Обратите внимание, что при записи числового множества составляющие его числа и числовые промежутки упорядочиваются по возрастанию. Это не обязательное, но желательное условие, так как упорядоченное числовое множество проще представить и изобразить на координатной прямой. Также отметим, что в подобных записях не используются числовые промежутки с общими элементами, так как такие записи можно заменить объединением числовых промежутков без общих элементов. Например, объединение числовых множеств с общими

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Множество задано словесным описанием. задайте это множество, перечислив его элементы: цифры, которые больше 5
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

sanhimki47
rezh2009766
kirill76536
fetisov68av
iracaenko153
ludmila-malev280
maruska90
asl09777
VASILEVNA
Pilotmi247074
sindika
ekb676
Алексей424
Prokopeva1062
istok11