shmanm26
?>

Сократите дробь 48m(2m-n)³/60n(2m-n)³

Алгебра

Ответы

Varagyant
48*m^(6-5)*n^(4-5)*k^(2-2)/60=4/5*m*n^(-1)k^0=4m/5n
tagirova1

Сначала узнаем сколько всего чисел, кратных 102 и не превышающих 10000. Для этого достаточно вычислить неполное частное при делении 10000 на 102, это 98.

Перед нами последовательность чисел, каждое из которых делится на 102: {1·102; 2·102; 3·102; ... ; 98·102}. Узнаем, какие из этих чисел кратны 14 и 15.

Заметим, что 102 = 2·3·17, а 14 = 2·7. Числа в нашей последовательности имеют вид 102n. Тогда число такого вида будет делиться на 7, если n кратно 7. Количество таких чисел можно также найти при делении 98 на 7, это 14. Аналогично и для 15 = 3·5 можно получить, что чисел, кратных 15, в нашей последовательности [98/5] = 19 ([x] - целая часть числа x).

Итак, у нас есть 98 чисел кратных 102, из них 14 чисел кратны 14, а 19 чисел кратны 15. Тогда количество чисел, удовлетворяющих условию: 98 - 14 - 19 = 65.

Хотел бы я так сказать, однако всего их не 65 :)

Дело в том, что в нашей последовательности есть числа, которые делятся и на 14, и на 15, а мы это не учли (в нашем ответе числа такого рода вычитались по 2 раза). Это легко исправить, если узнать, сколько чисел делятся и на 14, и на 15.

Число делится и на 14, и на 15 тогда и только тогда, когда оно делится на НОК(14, 15) = 210.

Заметим, что 210 = 2×3×5×7, а 102 = 2·3·17 (как уже выяснялось ранее). Значит, числа вида 120n делятся на 210, если n кратно 35. Количество таких чисел: [98/35] = 2.

Тогда у нас 65+2 = 67 чисел, удовлетворяющих условию. Можно писать ответ.

ответ: 67.

kazan-ugoop36

Сначала узнаем сколько всего чисел, кратных 102 и не превышающих 10000. Для этого достаточно вычислить неполное частное при делении 10000 на 102, это 98.

Перед нами последовательность чисел, каждое из которых делится на 102: {1·102; 2·102; 3·102; ... ; 98·102}. Узнаем, какие из этих чисел кратны 14 и 15.

Заметим, что 102 = 2·3·17, а 14 = 2·7. Числа в нашей последовательности имеют вид 102n. Тогда число такого вида будет делиться на 7, если n кратно 7. Количество таких чисел можно также найти при делении 98 на 7, это 14. Аналогично и для 15 = 3·5 можно получить, что чисел, кратных 15, в нашей последовательности [98/5] = 19 ([x] - целая часть числа x).

Итак, у нас есть 98 чисел кратных 102, из них 14 чисел кратны 14, а 19 чисел кратны 15. Тогда количество чисел, удовлетворяющих условию: 98 - 14 - 19 = 65.

Хотел бы я так сказать, однако всего их не 65 :)

Дело в том, что в нашей последовательности есть числа, которые делятся и на 14, и на 15, а мы это не учли (в нашем ответе числа такого рода вычитались по 2 раза). Это легко исправить, если узнать, сколько чисел делятся и на 14, и на 15.

Число делится и на 14, и на 15 тогда и только тогда, когда оно делится на НОК(14, 15) = 210.

Заметим, что 210 = 2×3×5×7, а 102 = 2·3·17 (как уже выяснялось ранее). Значит, числа вида 120n делятся на 210, если n кратно 35. Количество таких чисел: [98/35] = 2.

Тогда у нас 65+2 = 67 чисел, удовлетворяющих условию. Можно писать ответ.

ответ: 67.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Сократите дробь 48m(2m-n)³/60n(2m-n)³
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Konstantin_Vadimirovich
nngudkova1970
vinokurova88251
arammejlumyan
detymira
gorsimonyan4
Staroverovanatasa494
Vera-zero281
chuev4444
Олег2014
sevro3038
ambstroy
myglassi26
Azarova Anastasiya1707
olgusikok