Volkov
?>

Составте уравнение, которое имеет корни -2 и 5

Алгебра

Ответы

milanmilan8672

(х+2)(х-5)=0

х²-5х+2х-10=0

х²-3х-10=0

pravovoimeridian
\frac{x-2}{3-x} \geq 0;
Область допустимых значений (ОДЗ): x≠3 (иначе в знаменателе будет 0).
Находим точки, в которых неравенство обращается в равенство.
\frac{x-2}{3-x} =0 \rightarrow x=2
Рассматриваем поведение в окрестности точки х=2, для чего вычисляем значение функции при х=1.9 и х=2.1, подставляя эти значения в исходное выражение.
y_1=\frac{x-2}{3-x} = \frac{-1.9-2}{3-1.9}= \frac{-3.9}{1.1}; y_10;
Осталось проверить, что происходит со знаком функции после точки х=3, составляющей ОДЗ.
y_3=\frac{x-2}{3-x} = \frac{3.1-2}{3-3.1}= \frac{1.1}{-0.1}; y_3
Анализируя знаки на участках (-∞;2]; [2;3); (3;∞) мы видим, что только знак у2, соответствует знаку исходного неравенства, т.е. ответом будет  [2;3)
vladimirdoguzov
\frac{x-2}{3-x} \geq 0;
Область допустимых значений (ОДЗ): x≠3 (иначе в знаменателе будет 0).
Находим точки, в которых неравенство обращается в равенство.
\frac{x-2}{3-x} =0 \rightarrow x=2
Рассматриваем поведение в окрестности точки х=2, для чего вычисляем значение функции при х=1.9 и х=2.1, подставляя эти значения в исходное выражение.
y_1=\frac{x-2}{3-x} = \frac{-1.9-2}{3-1.9}= \frac{-3.9}{1.1}; y_10;
Осталось проверить, что происходит со знаком функции после точки х=3, составляющей ОДЗ.
y_3=\frac{x-2}{3-x} = \frac{3.1-2}{3-3.1}= \frac{1.1}{-0.1}; y_3
Анализируя знаки на участках (-∞;2]; [2;3); (3;∞) мы видим, что только знак у2, соответствует знаку исходного неравенства, т.е. ответом будет  [2;3)

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Составте уравнение, которое имеет корни -2 и 5
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

klkkan
tanyatanyat
kristinmk
Tomilova1686
aedunova3
Olga_Vyacheslavovich1054
Vladimir
vera4
vvk2008
ayk111560
Isaeva_Marin1010
Shipoopi8
santechma
Lolira64
Владислав893