Скорость катера на16км больше скорости течения реки. катер за 2ч проплыл 18км по течению реки и 20км против течения реки. каковы скорости катера и течения реки
Пусть X - скорость катера, тогда Y - скорость реки. Свяжем их уравнениями: Поясню второе выражение: 2 часа это общее время движения, оно складывалось из времени движения1) вниз (vniz) по течению 2) вверх (vniz) по течению Решаем. Видно, что можно из первого высказывания взять 16 для второго высказывания. Получим: Вспоминаем о нашей сисеме. После преобразований (см. выше) получили:Вычитая или складывая почленно правые и левые части уравнений системы получим:2X = 40-2Y = -8, значитХ = 20 км/ч, Y=4 км/ч
kolesnikovaen
09.11.2020
Обозначим сумму буквой с, а слагаемые буквами а и b. Заметим, что ав=-1, действительно (2+√5)*(2-√5)=4-5=-1 и корень кубический из этого числа тоже равен -1. Кроме того , заметим, что а^3 +b^3=4 Воспользуемся тождеством (a+b)^3=a^3+b^3+3ab*(a+b) Учитывая обозначения, и, замеченные свойства слагаемых, получим: с^3=4-3c c^3-1=3-3c (c-1)*(c^2+c+1)=-3*(c-1) Таким образом, видим, что с=1 - решение этого уравнения. Поделим обе части на с-1. Получим: c^2+c+0,25=-3,75 или (с+0,5)^2=-3,75 , что невозможно. Значит решение единственно, с=1. Искомая сумма равна 1.
katarinacorvus825
09.11.2020
Наше уравнение такое: х⁴ - 13х² + 36 = 0. Сделаем замену, чтобы данное уравнение можно было решить с теоремы Виета: х² = t. Тогда делаем равносильный переход от изначального вида уравнения к такому: t² - 13t + 36 = 0. Коэффициент при t (то есть, b) нечётный => найдём D, равный b² - 4ac = (-13)² - 4*1*36 = 169 - 144 = 25 = 5² (при возведении в квадрат числа -5 тоже получится 25, но следующим шагом нам нужно будет извлечь из дискриминанта корень, который должен получиться неотрицательным, поэтому подходит именно 5). Мы знаем, что b = -13 => -b = 13; D = 25 => √D = 5; a = 1 => 2a = 2. Тогда t = (-b + √D) / (2a) = (-(-13) + 5) / 2 = 18 / 2 = 9; t¹ = (-b + √D) / (2a) = (-(-13) - 5) / 2 = 8 / 2 = 4. Таким образом, мы получаем, что х², равное t, может быть или 4, или 9, соответственно, в 1м случае х = ±2, во втором случае х = ±3. ответ: ±2; ±3.