lele4kass
?>

Вычислите площадь фигуры, ограниченной графиком функции y=2-x^2 и: а) касательной к этому графику в его точке с абсциссой x=-1 и прямой x=0 б) касательными к этому графику в его точках с абсциссами x=1 и x=-1

Алгебра

Ответы

arteevdimon
Y=2-x²
y(-1)=2-1=1
y`(x)=-2x
y`(-1)=2
Y=1+2(x+1)=1+2x+2=2x+3-касательная
Фигура ограничена сверху касательной ,а снизу параболой.
Площадь равна интегралу от -1 до 0 от функции (2х+3-2+х²)=(х²+2х+1)
S=x³/3+x²+x|0-(-1)=1/3-1+1=1/3
б)Найдем уравнение 2 касательной
y(1)=1
y`(1)=-2
Y=1-2(x-1)=1-2x+2=3-2x
Площадь будет равна 2 интегралам от -1 до 0 от функции (x²+2x+1),т.к фигура ограниченная двумя прямыми и функцией симметрична относительно оси оу.
S=2*1/3=2/3.
Mariya dmitrievna

Если левая и правая части уравнения являются рациональными выражениями, то такие уравнения называют рациональными.

Рациональные уравнения, в которых и левая и правая части являются целыми выражениями, называются целыми. После упрощения целого уравнения его левая часть представляет собой многочлен.

Например, 2х + 5 = 3(8 - х) - целое, х - 5/х = -3х + 19 - не является целым, оно является дробным.


Степень целого уравнения - это степень многочлена.

Степень многочлена - это степень старшего члена многочлена.

Например, у многочлена х + 5 - степень 1-я, х² + 3х -2 - степень 2-я,

х + 4х² - х³ - 3-я степень.

dmitrovlug8248

Начнем с принятых обозначений. Как известно, для обозначения множеств используются заглавные буквы латинского алфавита. Числовые множества, как частный случай множеств, обозначаются также. Например, можно говорить о числовых множествах A, H, W и т.п. Особую важность имеют множества натуральных, целых, рациональных, действительных, комплексных чисел и т.п., для них были приняты свои обозначения:

N – множество всех натуральных чисел;

Z – множество целых чисел;

Q – множество рациональных чисел;

J – множество иррациональных чисел;

R – множество действительных чисел;

C – множество комплексных чисел.

Отсюда понятно, что не стоит обозначать множество, состоящее, к примеру, из двух чисел 5 и −7 как Q, это обозначение будет вводить в заблуждение, так как буквой Q обычно обозначают множество всех рациональных чисел. Для обозначения указанного числового множества лучше использовать какую-нибудь другую «нейтральную» букву, например, A.

Раз уж мы заговорили про обозначения, то здесь напомним и про обозначение пустого множества, то есть множества, не содержащего элементов. Его обозначают знаком ∅.

Также напомним про обозначение принадлежности и непринадлежности элемента множеству. Для этого используют знаки ∈ - принадлежит и ∉ - не принадлежит. Например, запись 5∈N означает, что число 5 принадлежит множеству натуральных чисел, а 5,7∉Z – десятичная дробь 5,7 не принадлежит множеству целых чисел.

И еще напомним про обозначения, принятые для включения одного множества в другое. Понятно, что все элементы множества N входят в множество Z, таким образом, числовое множество N включено в Z, это обозначается как N⊂Z. Также можно использовать запись Z⊃N, которая означает, что множество всех целых чисел Z включает множество N. Отношения не включено и не включает обозначаются соответственно знаками ⊄ и ⊅. Также используются знаки нестрогого включения вида ⊆ и ⊇, означающие соответственно включено или совпадает и включает или совпадает.

Про обозначения поговорили, переходим к описанию числовых множеств. При этом затронем лишь основные случаи, которые наиболее часто используются на практике.

Начнем с числовых множеств, содержащих конечное и небольшое количество элементов. Числовые множества, состоящие из конечного числа элементов, удобно описывать, перечисляя все их элементы. Все элементы-числа записываются через запятую и заключаются в фигурные скобки, что согласуется с общими правилами описания множеств. Например, множество, состоящее из трех чисел 0, −0,25 и 4/7 можно описать как {0, −0,25, 4/7}.

Иногда, когда число элементов числового множества достаточно велико, но элементы подчиняются некоторой закономерности, для описания используют многоточие. Например, множество всех нечетных чисел от 3 до 99включительно можно записать как {3, 5, 7, …, 99}.

Так мы плавно подошли к описанию числовых множеств, число элементов которых бесконечно. Иногда их можно описать, используя все тоже многоточие. Для примера опишем множество всех натуральных чисел: N={1, 2. 3, …}.

Также пользуются описанием числовых множеств посредством указания свойств его элементов. При этом применяют обозначение {x| свойства}. Например, запись {n| 8·n+3, n∈N} задает множество таких натуральных чисел, которые при делении на 8 дают остаток 3. Это же множество можно описать как {11,19, 27, …}.

В частных случаях числовые множества с бесконечным числом элементов представляют собой известные множества N, Z, R, и т.п. или числовые промежутки. А в основном числовые множества представляются как объединение составляющих их отдельных числовых промежутков и числовых множеств с конечным числом элементов (о которых мы говорили чуть выше).

Покажем пример. Пусть числовое множество составляют числа −10, −9, −8,56, 0, все числа отрезка [−5, −1,3] и числа открытого числового луча (7, +∞). В силу определения объединения множеств указанное числовое множество можно записать как {−10, −9, −8,56}∪[−5, −1,3]∪{0}∪(7, +∞). Такая запись фактически означает множество, содержащее в себе все элементы множеств {−10, −9, −8,56, 0}, [−5, −1,3] и (7, +∞).

Аналогично, объединяя различные числовые промежутки и множества отдельных чисел, можно описать любое числовое множество (состоящее из действительных чисел). Здесь становится понятно, почему были введены такие виды числовых промежутков как интервал, полуинтервал, отрезок, открытый числовой луч и числовой луч: все они в купе с обозначениями множеств отдельных чисел позволяют описывать любые числовых множества через их объединение.

Обратите внимание, что при записи числового множества составляющие его числа и числовые промежутки упорядочиваются по возрастанию. Это не обязательное, но желательное условие, так как упорядоченное числовое множество проще представить и изобразить на координатной прямой. Также отметим, что в подобных записях не используются числовые промежутки с общими элементами, так как такие записи можно заменить объединением числовых промежутков без общих элементов. Например, объединение числовых множеств с общими

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Вычислите площадь фигуры, ограниченной графиком функции y=2-x^2 и: а) касательной к этому графику в его точке с абсциссой x=-1 и прямой x=0 б) касательными к этому графику в его точках с абсциссами x=1 и x=-1
Ваше имя (никнейм)*
Email*
Комментарий*