albina6580
?>

Решить линейную систему уравнений методом гаусса: x + 2y +3z = 4 x + 3y +2z = 5 3x + y + z = 7

Алгебра

Ответы

Olga1509
Действия по строкам. 
стр1 = стр1
стр2 = стр2 - стр1  
стр3 = стр3 - 3*стр1 и получили
\left[\begin{array}{cccc}1&2&3&4\\0&1&-1&1\\0&-5&-8&-5\end{array}\right]
стр1 = стр1 - 2*стр2
стр3 = стр3 - (-5)*стр2 и получили
\left[\begin{array}{cccc}1&0&5&2\\0&1&-1&1\\0&0&-13&0\end{array}\right]
Разделили стр3 на -13  к стр1 прибавили 5*стр.3 и получили 
\left[\begin{array}{cccc}1&0&0&2\\0&1&0&1\\0&0&1&0\end{array}\right]
И записываем ответ: X=2, Y=1, Z=0
puma802
x^4+px^2+g
X^2=t
t^2+pt+g
1) уравнение x^4+px^2+g имеет 4 корня, если t^2+pt+g имеет 2 различных корня, т.е. D>0
x1=(-p+√(p^2-4g))/2
x2=(-p-√(p^2-4g))/2
и при этом x1>0 и x2>0 , тогда 
t1=√((-p+√(p^2-4g))/2)
t2=-√((-p+√(p^2-4g))/2)
t3=√((-p-√(p^2-4g))/2)
t4=-√((-p-√(p^2-4g))/2)
2) уравнение x^4+px^2+g имеет 2 корня, если t^2+pt+g имеет 1  корень, т.е. D=0 . p^2-4g=0
x=-p/2 и при этом x>0
t1=√(-p/2)
t2=-√(-p/2)
или если D>0, но при этом 
x1=(-p+√(p^2-4g))/2
x2=(-p-√(p^2-4g))/2
и получается, что либо х1<0 либо x2<0
3) уравнение x^4+px^2+g не имеет корней, если t^2+pt+g не имеет корней, т.е. D<0 или если D>0, но при этом 
x1=(-p+√(p^2-4g))/2 
x2=(-p-√(p^2-4g))/2
и получается, что x1<0 и x2<0
или если D=0 и 
x=-p/2 и при этом x<0
KovalenkoIL
Task/26384367

Решить уравнение sin(π/2 + 2x) + √3cosx + 1 = 0
Укажите корни принадлежащие отрезку [-π ; π/2] .

sin(π/2 + 2x) + √3cosx + 1 = 0 ;
cos2x + √3cosx + 1 = 0 ; 
2cos²x -1 + √3cosx + 1 = 0 ; 
2cos²x+ √3cosx  = 0 ; 
2cosx(cosx + √3 /2 )  = 0 ; 
a)
cosx =  0   ⇒ x₁ =π/2 +πn , n∈Z .
или 
b)
cosx + √3 /2  =0 ;
cosx = - √3 /2   ⇒ x₂,₃ = ±( π -π/6) +2πn , n∈Z .
x₂ = -5π/6 +2πn , n ∈ Z ;
x₃= 5π/6 +2πn , n ∈ Z .
ответ1 : π/2 +πn ,  ±( π -π/6) +2πn , n∈Z . 

из  x₁ →  - π/2  ;
из  x₂ → - 5π/6 .
* * *  из  x₃  нет  * * *
ответ2 :  - π/2   ;- 5π/6 .

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Решить линейную систему уравнений методом гаусса: x + 2y +3z = 4 x + 3y +2z = 5 3x + y + z = 7
Ваше имя (никнейм)*
Email*
Комментарий*