Объяснение:
Сначала найдём вероятность обратного события, а именно "обе извлечённые детали — не стандартны".
Всего нестандартных деталей 10 - 8 = 2 штуки. Соответственно, есть только один извлечь именно их.
Всего же извлечь две детали из 10 будет 10!/(2!(10-2)!) = 10!/(2!8!) = 10*9/2 = 45.
Таким образом, вероятность события "обе извлечённые детали — не стандартны" составляет 1/45.
Тогда вероятность искомого события равна 1 - 1/45 = 44/45.
ответ: вероятность того, что среди наудачу извлечённых двух деталей будет хотя бы одна стандартная, составляет 44/45.
Объяснение:
Сначала найдём вероятность обратного события, а именно "обе извлечённые детали — не стандартны".
Всего нестандартных деталей 10 - 8 = 2 штуки. Соответственно, есть только один извлечь именно их.
Всего же извлечь две детали из 10 будет 10!/(2!(10-2)!) = 10!/(2!8!) = 10*9/2 = 45.
Таким образом, вероятность события "обе извлечённые детали — не стандартны" составляет 1/45.
Тогда вероятность искомого события равна 1 - 1/45 = 44/45.
ответ: вероятность того, что среди наудачу извлечённых двух деталей будет хотя бы одна стандартная, составляет 44/45.
Поделитесь своими знаниями, ответьте на вопрос:
Решить решить уравнение дискриминант
х +1 -2*√(х +1) * √(9 - х) + 9 -х = 2х -12
2√(х +1) * √(9 - х) = 22 - 2х
√(х +1) * √(9 - х) = 11 - х |²
(х +1)(9 -х) = 121 - 22х + х²
9х +9 - х² - х = 121 - 22х + х²
2х² - 30х + 112 = 0
х² - 15х + 56 = 0
По т. Виета х₁ = 7 и х₂ = 8
Надо учитывать, что после возведения в квадрат могут появиться посторонние корни. Так что нужна проверка.
1) х₁ = 7
√(7 +1) - √(9 - 7) = √(2*7 - 12)
√8 - √2 = √2
2√2 - √2 = √2 ( истинное равенство)
1) х₂ = 8
√(8 +1) - √(9 - 8) = √(2*8 - 12) ( истинное равенство)
ответ: 7; 8