Объяснение:
1.
а) так как коэффициент при x² равен 1, т.е. положителен, то ветви параболы направлены вверх.
б) выделяем полный квадрат: y=(x-7/2)²-25/4. Отсюда следует, что абсцисса вершина параболы x=7/2, а ордината y=-25/4. Поэтому вершина параболы имеет координаты (7/2; -25/4).
с) ось симметрии параболы - это прямая, проходящая через её вершину параллельно оси ОУ. Поэтому в данном случае ось симметрии имеет уравнение x=7/2.
d) решая уравнение x²-7*x+6=(x-7/2)²-25/4, находим x1=6, x2=1. Поэтому функция обращается в 0 в точках (1;0) и (6;0).
e) пусть x=0, тогда y=6, пусть x=7, тогда y=6. Таким образом, найдены две дополнительные точки: (0;6) и (7;6)
2.
а) f(3)=-3²+2*3+15=12, f(-5)=-(-5)²+2*(-5)+15=-20.
б) пусть x=k. Подставляя это значение в выражение для функции, приходим к уравнению 7=-k²+2*k+15, или k²-2*k-8=0. Оно имеет решения k1=4, k2=-2. Таким образом, график проходит через точки (-2;7) и (4;7).
3.
выделяя полный квадрат, запишем уравнение для v(t) в виде v(t)=9-(h-1)²
1) приравнивая v(t) к нулю, приходим к уравнению 9-(h-1)²=0. Решая его и учитывая, что h>0, находим максимальную глубину h=4 м.
2) из уравнения v(t)=9-(h-1)² следует, что наибольшее значение, равное 9 м/с, v(t) достигает при h=1 м.
Объяснение:
Войти
РЕКЛАМА
Салют, Сбер! Переведи деньги
Делайте переводы голосом в моб приложении СберБанк Онлайн
Перейти
АнонимМатематика13 апреля 02:40
Теплоход проходит по течению реки до пункта назначения 76км и после стоянки возвращается в пункт отправления. Найдите
скорость теплохода в неподвижной воде, если скорость течения равна3 км/ч, стоянка длится 1 час, а в пункт отправления теплоход возвращается через 20 часов после отплытия из него.
РЕКЛАМА
Салют, Сбер! Переведи деньги
Делайте переводы голосом в моб приложении СберБанк Онлайн
Перейти
ответ или решение1
Яковлев Федор
Пусть собственная скорость теплохода х км/ч. Скорость теплохода по течению реки равна (х + 3) км/ч. Скорость теплохода против течения реки (х – 3) км/ч. На путь по течению реки теплоходу понадобилось 76/(х + 3) часа, а на путь против течения реки – 76/(х – 3) часа. На весь путь туда и обратно теплоход потратил (76/(х + 3) + 76/(х – 3)) часа или (20 – 1) = 19 часов. Составим уравнение и решим его.
76/(х + 3) + 76/(х – 3) = 19 – приведем к общему знаменателю (х + 3)(х – 3) = x^2 – 9; первую дробь домножим на (х – 3), вторую – на (х + 3) и число 19 – на (x^2 – 9); далее решаем без знаменателя, т.к. две дроби с одинаковым знаменателем равны, если равны их числители;
76(x – 3) + 76(x + 3) = 19(x^2 – 9);
76x – 228 + 76x + 228 = 19x^2 – 171;
-19x^2 + 76x + 76x + 171 = 0;
19x^2 – 152x – 171 = 0;
D = b^2 – 4ac;
D = (- 152)^2 – 4 * 19 * (- 171) = 23104 + 12996 = 36100; √D = 190;
x = (- b ± √D)/(2a);
x1 = (152 + 190)/(2 * 19) = 342/38 = 9 (км/ч);
x2 = (152 – 190)/(2 * 19) < 0 – скорость не может быть отрицательным числом.
ответ. 9 км/ч.
Поделитесь своими знаниями, ответьте на вопрос:
Решите неравенство 3^x-2=(1: 2)^2-x
(3/2)ˣ⁻² = 1
(3/2)ˣ⁻² = (3/2)⁰
x - 2 = 0
x = 2