ответ:Отметь как лучший ответ
Объяснение:
1) Найти область определения функции;
Ограничений нет - х ∈ R (знаменатель не может быть равен нулю).
2) Исследовать функцию на непрерывность;
Непрерывна, так как нет точек разрыва функции.
3) Определить, является ли данная функция четной, нечетной;
f(-x) = ((-x)-3)²/((-x)² +9) = (x+3)²/(x² +9) ≠ f(-x) ≠ -f(-x).
Функция не чётная и не нечётная.
4) Найти интервалы функции и точки её экстремума ;
Находим производную функции.
y' = 6(x-3)(х+3)/(x² + 9)².
Приравняв её нулю (достаточно только числитель), имеем 2 корня:
х = 3 и х = -3.
Имеем 3 промежутка (-∞; -3), (-3; 3) и (3; ∞).
Находим знаки производной на этих промежутках.
Где производная положительна - функция возрастает, где отрицательна - там убывает. Точки, в которых происходит смена знака и есть точки экстремума - где производная с плюса меняется на минус - точка максимума, а где с минуса на плюс - точки минимума.
x = -4 -3 0 3 4
y' = 0,0672 0 -0,66667 0 0,0672.
Отсюда получаем:
Функция возрастает на промежутках (-∞; -3), (3; +∞) и убывает на промежутке (-3; 3)
Экстремумов два:
- максимум в точке х = -3,
- минимум в точке х = 3.
5) Найти интервалы выпуклости и вогнутости и точки перегиба графика функции;
Находим вторую производную.
y'' = -12х(x² - 27)/(x² + 9)³.
Приравняв нулю, имеем 3 точки перегиба:
х = 0, х = √27 = 3√3 и х = -3√3.
6) Найти асимптоты графика функции.
Асимптота есть одна горизонтальная у =1.
График функции, таблица точек для его построения приведены в приложении.
Объяснение:
Для выполнения разложения на множители выражения 2x2 + 14x + 24, которое есть квадратным трехчленом мы применим ряд следующих действия.
Начнем с того, что вспомним формулу:
ax2 + bx + c = a(x - x1)(x - x2).
А x1 и x2 это корни уравнения ax2 + bx + c = 0.
Итак, переходим к решению уравнения:
2x2 + 14x + 24 = 0;
x2 + 7x + 12 = 0;
D = b2 - 4ac = 72 - 4 * 1 * 12 = 49 - 48 = 1;
x1 = (-b + √D)/2a = (-7 + √1)/2 * 1 = (-7 + 1)/2 = -6/2 = -3;
x2 = (-b - √D)/2a = (-7 - √1)/2 * 1 = (-7 - 1)/2 = -8/2 = -4.
2x2 + 14x + 24 = 2(x + 3)(x + 4).
Поделитесь своими знаниями, ответьте на вопрос:
Y= x : 2 + 4 докажите что заданная функция возрастает
y -- возрастающая