(2x^2-3x+1)(2x^2+5x+1)=9x^2посмотрим что (могу и ошибиться,ибо все делаю не так как надо)1.)приравниваем к нулю: (2x^2-3x+1)(2x^2+5x+1)-9x^2=0 2.) раскрываем скобки: 4x^4 +10x^3+2x^2 -6x^3-15x^2-3x+2x^2+5x+1-9x^2=0 4x^4+4x^3-20x^2+2x=-1 3)выносим за скобки 2x: 2x(2x^3+2x^2-10x+1)=-1 2x=-1, x1=-0,5дальше,продолжаем2x^3+2x^2-10x+1=-1,отсюда 2x^3+2x^2-10x=-2,отсюда 2x за скобки снова: 2x(x^2+x-5)=-2, 2x=-2, x2=-1 x^2+x-5=-1,отсюда x^2+x=4, отсюда x за скобки: x(x+1)=4, x3=4, x4=3x1+x2+x3+x4=-0,5+(-1)+4+3=-1,5+7=5,5
krasa28vostok65
05.04.2022
Сначала простая логика. Допустим, из первых пяти выстрелов Петя попал 2 раза подряд и получил ещё 3+3+1=7 патронов, далее, из этих 7-ми выстрелов он ещё раз попал 2 раза подряд и получил ещё 3+3+1=7 патронов и уже из этих семи (видимо, устав), сделал два попадания, но уже не подряд, заработав ещё 3+3=6 патронов и уложился в условия получения приза, израсходовав 5+7+7+6=25 патронов. Непротиворечащая первому варианту комбинаторика, мыслим от конечных цифр - всего 25 патронов использовал Петя, чтобы сделать 25 выстрелов и получить приз, значит 20 выстрелов он получил дополнительно (25-5=20). Эти дополнительные 20 патронов Петя мог получить, попав в мишень шесть раз по одному попаданию (3+3+3+3+3+3=18 патронов) и мининум два раза должен был попасть подряд, чтобы получить ещё 2 “патрона” (18+2=20). ответ: в двух несовпадающих подходах Петя попадал два раза подряд.