А) log по основанию 4 (sinx+2sinxcosx+16)=log 16 по основанию 4 логарифмы отбрасываем и приравниваем подлогарифмические выражения sinx+2sinxcosx+16=16 sinx+2sinxcosx=16-16 sinx(1+2cosx)=0 sinx=0 или 1+2cosx=0 x=n, n∈z 2cosx=-1 cosx=-1/2 x=(-/3)+2n x=2/3+2n, n∈z б)(720;-450)
x=2n, n∈z
adman7
24.06.2022
1) Введем функцию: f(x)=(х∧2+2х+1)(х-3)(х+2)÷х∧2+2х-3, f(x)=0, (х∧2+2х+1)(х-3)(х+2)÷х∧2+2х-3=0 2) Найдем нули числителя и знаменателя: Числитель: -Все скобки приравниваем к нулю: х∧2+2х+1=0 D<0, f(x)>0 х-любое число x-3=0 x=3 x+2=0 x=-2 Расставляем полученные числа на числовую прямую, нам нужен промежуток с плюсом, т.к. в условии функция >0, получаем х принадлежит(-бесконечности; 2),(3; до +бесконечности), Знаменатель: х∧2+2х-3 не равно 0 D=16 x=-3 x=1 Так же на числовой прямой расставляем полученные корни, получаем х принадлежит (-бесконечности; -3),(1; + бесконечности) Сопоставляем полученные промежутки на общую числовую прямую, получаем конечный ответ х принадлежит (-бесконечности; -3),(3; + бесконечности)
логарифмы отбрасываем и приравниваем подлогарифмические выражения
sinx+2sinxcosx+16=16
sinx+2sinxcosx=16-16
sinx(1+2cosx)=0
sinx=0 или 1+2cosx=0
x=n, n∈z 2cosx=-1
cosx=-1/2
x=(-/3)+2n
x=2/3+2n, n∈z
б)(720;-450)
x=2n, n∈z