1) График линейной функции y = kx + b может располагаться в III и IV координатных четвертях в случае, если k = 0, а b˂0, тогда функция имеет вид y = b и проходит параллельно оси ОХ через точку (0; b).
2) При условии b = 0, а k ˃ 0, тогда функция имеет вид y = kx (прямая пропорциональность), проходит через точку (0;0) и наклонена под острым углом к положительной части оси абсцисс.
3)Не может.
4) Уравнение вида х=а - не является функцией, не может.
5)Аналогично 4) не может.
6)Как в 1), только b˃0.
1.да 2. ? 3.да 4. да 5.нет 6.нет
ответ: 24 см и 12 см.
Объяснение:
Пусть l - длина отрезка, соединяющего середины диагоналей трапеции. Этот отрезок лежит на средней линии трапеции и равен полуразности её оснований. Пусть a и b - основания трапеции, причём a>b, а c - длина средней линии трапеции. Так как по условию диагонали трапеции делят её среднюю линию на 3 равных части, то l=c/3. Отсюда c=3*l=3*6=18 см и, так как c=(a+b)/2, то мы получаем систему уравнений:
(a-b)/2=6
(a+b)/2=18
или:
a-b=12
a+b=36
Решая её, находим a=24 см и b=12 см.
Поделитесь своими знаниями, ответьте на вопрос:
Решите уравнения: а) х^2-27=0 б) 4х^2=12
Х=27/2
Х= 13,5