Pirogovskii695
?>

Найти синус альфа если косинус альфа равен корню из 3/5

Алгебра

Ответы

Aleksei
Sin^2L+Cos^2L=1
sin^2L=1-sin^2L
sin^2L=1-3/5=2/5
sinL=корню квадратному из 2/5
anikamalish

Решим задачу на движение по воде

Дано:

t(по течению) = 2 ч

t(против течения)=3 ч

v(собств.)=18,6 км/ч

v(теч.)=1,3 км/ч

Найти

S=? км

Решение

1) Найдём скорость катера против течения реки:

v(против течения)=v(собственная) - v (течения реки)=18,6-1,3=17,3 (км/час)

2) Катер плыл 3 часа против течения со скоростью 17,3 км/час. Найдём расстояние, которое катер проплыл против течения:

S(расстояние)=v(скорость)×t(время)

S(против течения)=17,3×3= 51,9 (км)

3) Найдём скорость катера по течению:

v(по течению)=v(собственная) + v (течения реки)=18,6+1,3=19,9 (км/час)

4) Катер плыл 2 часа против течения со скоростью 19,9 км/час. Найдём расстояние, которое катер проплыл по течению:

S(расстояние)=v(скорость)×t(время)

S(по течению)=2×19,9=39,8 (км)

5) Расстояние за 5 часов равно:

S=S(против течения)+S(по течению)=51,9+39,8=91,7 (км)

ОТВЕТ: катер за 5 часов проплыл расстояние 91,7 километров.

КРАТКО

Решим данную задачу по действиям с пояснениями.

1) 18,6 + 1,3 = 19, 9 километров в час - скорость катера по течению реки, так как собственная скорость катера 18,6 километров в час, а скорость течения реки 1,3 километров в час;

2) 18,6 - 1,3 = 17, 3 километров в час - скорость катера против течению реки, так как собственная скорость катера 18,6 километров в час, а скорость течения реки 1,3 километров в час;

3) 3 * 17,3 = 51,9 километров - расстояние, которое проплыл катер против течения реки;

4) 2 * 19,9 = 39,8 километров - расстояние, которое проплыл катер по течения реки;

5) 51,9 + 39,8 = 91,7 километров - такой путь проплыл катер.

ответ: 91,7 километров.

tooltechnic

1) Представляем в виде многочлена математическое выражение:

1. (с - 6)² = (с - 6)(с - 6) = с² - 6с - 6с + 36 = с² - 12с + 36;

2. (2а - 3в)² = (2а - 3в)(2а - 3в) = 4а² - 6ав - 6ав + 9в² = 4а² - 12ав + 9в²;

3. (5 - а)(5 + а) = 25 + 5а - 5а - а² = 25 - а²;

4. (7х + 10у)(10у - 7х) = 70ху - 49х² + 100у² - 70ху = 100у² - 49х²;

2) Раскладываем на множители:

1. в² - 49 = в² - 7²;

2. с² - 8с + 16 = (с - 4)(с - 4) = (с - 4)²;

3. 100 - 9х² = 10² - (3х)²;

4. 4а² + 20ав + 25в² = (2а)² + 5в(4а + 5в);

3) Максимально возможно упрощаем выражение:

(х - 2)(х + 2) - (х - 5)² = (х - 2)(х + 2) - (х - 5)(х - 5) = (х² + 2х - 2х - 4) - (х² - 5х - 5х + 25) =

х² - 4 - х² + 10х - 25 = 10х - 29;

4) Решаем уравнение с одним неизвестным:

4(3у + 1)² - 27 = (4у + 9)(4у - 9) + 2(5у + 2)(2у - 7);

4(3у + 1)(3у + 1) - 27 = (4у + 9)(4у - 9) + 2(5у + 2)(2у - 7);

Раскрываем скобки:

4(9у² + 3у + 3у + 1) - 27 = (16у² - 36у + 36у - 81) + 2(10у² - 35у + 4у - 14);

4(9у² + 6у + 1) - 27 = (16у² - 81) + 2(10у² - 31у - 14);

36у² + 24у + 4 - 27 = 16у² - 81 + 20у² - 62у - 28;

Приводим подобные:

36у² + 24у - 23 = 36у² - 62у - 109;

Переносим с противоположным знаком известное в правую часть равенства, неизвестные в левую:

36у² + 24у - 36у² + 62у = 23 - 109;

И снова приводим подобные:

86у = - 86;

Делим обе части равенства на коэффициент при у:

у = - 86 / 86;

у = - 1;

Проверяем:

4(3 х (- 1) + 1)² - 27 = (4 х (- 1) + 9)(4 х (- 1) - 9) + 2(5 х (- 1) + 2)(2 х (- 1) - 7);

4(- 3 + 1)² - 27 = (- 4 + 9)(- 4 - 9) + 2(- 5 + 2)(- 2 - 7);

4 х 4 - 27 = 5 х (- 13) + 2 х (- 3) х (- 9);

16 - 27 = - 65 + 54;

- 11 = - 11.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найти синус альфа если косинус альфа равен корню из 3/5
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Мария-Кострыгина175
gorbunova188
mg4954531175
ska67mto3983
mariashapar
Кристина Валентиновна
Качкова1820
zolotayaoxana1982
ddavydov1116
Anna_Kamil
irinaphones8
Galina-3639220565
Gavrilova2527
Гаврилаш
3х\2х-5-(28-53х)\(4х2-25)=4х\(2х-5)
ОвсепянСергей88