Перенесем все влево и вынесем за скобки :
Из этого следует, что уравнение всегда имеет хотя бы одно решение - . Задача сводится к тому, чтобы посмотреть, при каких
будут корни у уравнения
и сколько их будет. Для этого достаточно рассмотреть 2 ситуации.
1) проверим, при каком значении корнем уравнения
будет
. Подставляем ноль в уравнение:
. При
имеем:
Делаем вывод, что при уравнение имеет два корня:
.
2) при уравнение
не может иметь корень
. Уравнение - квадратное. Сразу ищем дискриминант:
Здесь рассматриваем 3 случая:
2.1. Если , то уравнение
решений не имеет - следовательно, вторая скобка не будет давать новых решений и у исходного уравнения оно будет единственным.
2.2. Если , то подставляя вместо параметра -9 в итоге получаем:
. Итого "вылез" еще один корень - значит, у исходного уравнения их будет два.
2.3. Если , то уравнение
имеет два решения - следовательно, исходное будет иметь уже 3 решения. Заметим, что в это неравенство входит
, а мы его проверяли отдельно - при
корней будет 2, а не 3, поэтому из неравенства его нужно исключить.
ОТВЕТ: При уравнение имеет единственный корень; при
и
уравнение имеет два различных корня; при
уравнение имеет три различных корня.
Поделитесь своими знаниями, ответьте на вопрос:
Разложить на множители : 3x+3y= 5a-5d= 8x+12y= 24x-32x= 1, 25x-1, 75a= 3b²-3b= a⁴+2a²= x³-3x²-x= 7x(после х пятая степень)-14х³+21х²=
5(a-d)
4(2x+3y)
-8x
0,25(5x-7a)
3b(b-1)
a^2(a^2+2
x(x^2-3x-1)
7x^2(x^3-2x+3)