18 - (x - 5) * (x - 4) = -2;
18 - (x^2 - 4 * x - 5 * x + 20) = -2;
18 - (x^2 - 9 * x + 20) = -2;
Так как, перед скобками стоит знак минус, то значения знаков меняются на противоположный знак.
18 - x^2 + 9 * x - 20 = -2;
-x^2 + 9 * x - 2 = -2;
-x^2 + 9 * x - 2 + 2 = 0;
-x^2 + 9 * x = 0;
x^2 - 9 * x = 0;
Найдем дискриминант квадратного уравнения:
D = b2 - 4 * a * c = (-9)2 - 4 * 1 * 0 = 81 - 0 = 81;
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = (9 - √81)/(2 * 1) = (9 - 9)/2 = 0/2 = 0;
x2 = (9 + √81)/(2 * 1) = (9 + 9)/2 = 18/2 = 9;
ответ: х = 0 и х = 9.
-(а-3)(а)(-3)(0)(3)(6)>x
а - 3 < 0
3 + a < 0 К 3 прибавляем отрицательное число. Например (-1).
Тогда сумма будет больше нуля. Если прибавим (-3), получим 0. А вот если прибавим число еще меньше (-5; -12), то попадем на числовой оси в точку левее нуля.
6 - а > 0
Вычитание заменяем сложением с противоположным числом.
6 - (-2)=6 + 2. Поэтому при любом значении "а", хоть (-100), получим число больше нуля.
НОВОЕ ЗАДАНИЕ.
а < -3
Определить знак выражения
(а - 3)*( 3 + а) / (6 - а)
Как разобрано выше
а - 3 < 0
3 + a < 0
6 - a > 0
Тогда минус на минус будет плюс.
Плюс разделить на плюс тоже плюс. Это ответ: выражение > 0.
Поделитесь своими знаниями, ответьте на вопрос:
Сократить дробь 1.) 11a^2b^5c^3 -121ab^3c^2 2) -4x^3y^4z^5 -12x^2y^3z^5 3) m^2-n^2 m+n 4) y^2-4y+4 y-2