Касательная прямая есть производная в точке. Пусть точка касания с графиком имеет координаты . График функций симметричен относительно оси . Пересекающая ось в точке . Очевидно что координата точки . Рассмотрим прямоугольный треугольник образованный касательной к графику функций с осями ординат и абсцисс. . Так как график симметричен , то угол образующие касательные , ордината будет являться биссектрисой . Следовательно треугольник будет прямоугольным и равнобедренным. пусть касательная имеет вид , так как Точка касания равна -1 , касательная в этой точке по формуле То есть координата
соловьев_Куркина
08.03.2023
А) пусть f(x)=(x-4)(x+5), f(x)<0, Область определения: R Тогда нули f(x): х=4, х=-5 Так как это квадратичная функция, графиком является парабола, ветви вверх, то Решением является отрезок от(-5;4) Б) пусть f(x)=х^2-144, f(x)>=0, Область определения: R Тогда нули f(x): х=12, х=-12 Так как это квадратичная функция, графиком является парабола, ветви вверх, то Решением являются интервалы (-бесконечность; -12] и [12;+бесконечность) В)пусть f(х)=-6х^2+х+2, f(x)>=0, Область определения: R Тогда нули f(x): дискриминант равен:1+4*6*2=49 Х=-1, х=4/3 Так как это квадратичная функция, графиком является парабола, ветви вниз, то Решением является интервал от [-1; 4/3]
(3x-1)^2-8(x+1)^2=(x+2)(x-2)
9x^2-6x+1-8(x^2+2x+1)=x^2-4
9x^2-6x+1-8x^2-16x-8=x^2-4
x^2-x^2-6x-16x=-4+7
-22x=3
x=-3/22