mausgaly
?>

Сколько корней имеет уравнение 0, 5x^3=2-x . подробным решением ( ) заранее *

Алгебра

Ответы

Olga Arutyunyan

Теорема. Если на некотором промежутке функция f(x) возрастает, а функция g(x) убывает (либо наоборот), то уравнение f(x)=g(x) на этом промежутке имеет единственный корень либо не имеет корней.

Положим f(x) = 0.5x³ - возрастающая функция, возрастает на всей числовой прямой и g(x) = 2 - x - прямая, проходящая через точки (0;2), (2;0) и g - убывает на всей числовой прямой.


Графики пересекаются в одной точке, следовательно, уравнение f(x)=g(x) имеет одно решение.



ответ: уравнение имеет один корень


Сколько корней имеет уравнение 0,5x^3=2-x . подробным решением ( ) заранее *
Людмила
Скорее всего, в этом условии есть ошибка. Согласно школьной программе степенная функция с дробным показателем определена только для неотрицательных х. (см., например, учебник Мордкович А.Г., "Алгебра 10-11 и начала математического анализа. Часть 1"  14 издание, Москва 2013 г., стр. 220-221.)
 
Но и в текущей постановке эту задачу можно считать корректной и решить, хотя это и не так интересно. Поскольку в условии не указана конкретная точка, через которую должна проходить касательная (а сказано только, что у нее абсцисса должна быть -1), возьмем любую касательную к графику функции f(x) и на этой касательной возьмем точку с абсциссой x0=-1. 
f'(x)=(4/5)x^(-1/5). При х=1, f'(1)=4/5, f(1)=1. Значит уравнение касательной 
y=4(x-1)/5+1, т.е. y=4x/5+1/5. Очевидно, точка М(-1; -3/5) лежит на касательной. Итак, прямая c уравнением y=4x/5+1/5 является касательной к графику функции f(x)=x^(4/5) и проходит через точку M(-1;-3/5) c абсциссой -1 (хотя сама точка М не лежит на графике). Понятно, что таких точек можно найти сколько угодно, т.к. можно брать любые касательные. В такой постановке задача, конечно неинтересна. Собственно поэтому я и думаю, что в условии ошибка.

P.S. На всякий случай присоединяю скрин из учебника, в качестве подтверждения моих слов про область определения степенной функции с дробным показателем. Обратите внимание на упражнение г) и на замечание ниже.
Составьте уравнение касательной к графику функции f(x) в точке с абциссой x0: f(x)= x0= -1
Составьте уравнение касательной к графику функции f(x) в точке с абциссой x0: f(x)= x0= -1
amramzi
Скорее всего, в этом условии есть ошибка. Согласно школьной программе степенная функция с дробным показателем определена только для неотрицательных х. (см., например, учебник Мордкович А.Г., "Алгебра 10-11 и начала математического анализа. Часть 1"  14 издание, Москва 2013 г., стр. 220-221.)
 
Но и в текущей постановке эту задачу можно считать корректной и решить, хотя это и не так интересно. Поскольку в условии не указана конкретная точка, через которую должна проходить касательная (а сказано только, что у нее абсцисса должна быть -1), возьмем любую касательную к графику функции f(x) и на этой касательной возьмем точку с абсциссой x0=-1. 
f'(x)=(4/5)x^(-1/5). При х=1, f'(1)=4/5, f(1)=1. Значит уравнение касательной 
y=4(x-1)/5+1, т.е. y=4x/5+1/5. Очевидно, точка М(-1; -3/5) лежит на касательной. Итак, прямая c уравнением y=4x/5+1/5 является касательной к графику функции f(x)=x^(4/5) и проходит через точку M(-1;-3/5) c абсциссой -1 (хотя сама точка М не лежит на графике). Понятно, что таких точек можно найти сколько угодно, т.к. можно брать любые касательные. В такой постановке задача, конечно неинтересна. Собственно поэтому я и думаю, что в условии ошибка.

P.S. На всякий случай присоединяю скрин из учебника, в качестве подтверждения моих слов про область определения степенной функции с дробным показателем. Обратите внимание на упражнение г) и на замечание ниже.
Составьте уравнение касательной к графику функции f(x) в точке с абциссой x0: f(x)= x0= -1
Составьте уравнение касательной к графику функции f(x) в точке с абциссой x0: f(x)= x0= -1

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Сколько корней имеет уравнение 0, 5x^3=2-x . подробным решением ( ) заранее *
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

s45983765471717
сергеевич1958
Захаров-Иванович
Светлана308
БашуроваОльга369
merung
itartdesignprof
Yuliya Aleksandr686
Олеся
lenapopovich556510
Мелконян1137
multikbo3049
Анастасия Елена
tarasova
sveta300856729