Сначала найдем точки пересечения, чтобы узнать границы фигуры. x^2 + 1 = 7 - x x^2 + x - 6 = 0 (x + 3)(x - 2) = 0 Границы: -3 и 2 Прямая y = 7 - x лежит выше параболы, поэтому вычитаем из нее.
Zuriko1421
17.04.2020
В множестве А - 101 элемент, в множестве В - 218 элементов. А∩В = 69, т.е. пересечение двух множеств даёт 69 элементов, другими словами они входят и в множество А и в множество В.
а) Чтобы узнать сколько элементов принадлежит А, но не принадлежит В, надо из множества А вычесть число элементов, которые принадлежат обоим множествам, т.е. А∩В. Итак, 101 - 69 = 32
б) Аналогично, если из множества В вычесть число элементов, принадлежащие А и В, т.е. А∩В, то получим количество элементов, которые принадлежат множеству В, но не принадлежат множеству А. Итак, 218 - 69 = 149
в) А∪В. Объединение множеств. Здесь суммируем количество элементов, которые принадлежат только множеству А, только множеству В и количество элементов, которые принадлежат обоим множествам: 32 + 149 + 69 = 250
x^2 + 1 = 7 - x
x^2 + x - 6 = 0
(x + 3)(x - 2) = 0
Границы: -3 и 2
Прямая y = 7 - x лежит выше параболы, поэтому вычитаем из нее.