Перевести десятичные дроби в обыкновенные.
1) 0,7
Читаем: «Нуль целых, семь десятых». Нуль в целой части обыкновенных дробей не пишут, остается семь десятых. Так и пишем:
\[0,7 = \frac{7}{{10}}\]
Или: нуль целых не пишем. В числитель ставим 7, в знаменатель — 10, потому что после запятой стоит одна цифра.
2) 2,53
Читаем: «Две целых, пятьдесят три сотых». Как слышим, так и пишем:
\[2,53 = 2\frac{{53}}{{100}}\]
Или: 2 целых, в числитель пишем 53, а в знаменатель — 100, потому что после запятой стоят две цифры.
3) 14, 406
Читаем: «Четырнадцать целых, четыреста шесть тысячных». Как слышим, так и пишем:
\[14,406 = 14\frac{{406}}{{1000}}\]
Или: 14 целых, в числитель пишем 406, а в знаменатель — 1000, потому что после запятой стоят три цифры.
4) 30,00208
Читаем: «Тридцать целых, двести восемь стотысячных». Как слышим, так и пишем:
\[30,00208 = 30\frac{{208}}{{100000}}\]
Или: 30 целых, в числитель пишем 208, а в знаменатель — 100000, потому что после запятой — пять цифр.
Поскольку ветки парабол направлены вниз, то вершины парабол расположены либо выше оси абсцисс при условии, что D > 0, либо ниже оси абсцисс, если D < 0.
1) D > 0;
Имеем систему неравенств:
64p² + 4p > 0 и 64p² + 16 > 0
p(16p + 1) > 0 и 4p² + 1 > 0 второе неравенство удовлетворяют все действительные числа, поэтому система равносильна первому неравенству.
p(16p + 1) > 0; p(16p + 1) = 0; p₁ = 0; p₂ = -1/16.
-1/16 0>
p∈(-∞; -1/16)U(0; ∞)
При p∈(-∞; -1/16)U(0; ∞) вершины парабол расположены выше оси абсцисс
2) D < 0 исключается, поскольку у второй функции дискриминант положителен и её вершина располагается выше оси абсцисс.
Поделитесь своими знаниями, ответьте на вопрос:
7(1-х)=(2х+3)(1-х) решить через дескрименант