Вероятность того, что батарейка бракованная, равна 0, 01. покупатель в магазине выбирает случайную упаковку, в которой две батарейки. найдите вероятность того, что обе батарейки окажутся неисправными.
У меня получилось, что ни при каком а, т.к. из первого уравнения y=ax+1-cos(x). Подставляя это во второе, получим (ax+1-2cos(x))(ax+1)=0. Если a=0, то cos(x)=1/2, что имеет бесконечное число решений. Если a≠0, то всегда есть корень x=-1/a. Кроме того, уравнение cos(x)=(ax+1)/2 тоже всегда имеет корень, т.к. любая прямая, проходящая через точку (0,1/2) всегда пересекает график cos(x). Значит, единственная возможность этой системе иметь одно решение, это когда -1/a является единственным корнем уравнения cos(x)=(ax+1)/2. Тогда cos(-1/a)=0, откуда , , но для них будет всегда больше одного решения, т.к. даже при самом большом значении a при k=0 и k=1 прямая (ax+1)/2 пересечет график cos(x) в трех точках. А значит, при всех остальных а угол наклона прямой будет еще меньше, и, значит, пересечений с косинусом будет еще больше.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Вероятность того, что батарейка бракованная, равна 0, 01. покупатель в магазине выбирает случайную упаковку, в которой две батарейки. найдите вероятность того, что обе батарейки окажутся неисправными.
вероятность совместного появления независимых событий A и B равна произведению вероятностей этих событий: Р(АВ) = Р(А) · Р(В).
Применим данную теорему к нашей задаче:События, при которых обе батарейки окажутся неисправными – независимые, поэтому:
Р = 0,01 · 0,01 = 0,0001 — вероятность того, что обе батарейки окажутся неисправными.
ответ: 0,0001