В решении.
Объяснение:
При каких значениях b и c вершина параболы y = 3x² + bx + c находится в точке В(-1; 2)?
1) По формуле х₀ (значение х вершины параболы) = -b/2a.
х₀ известно (координата х точки В) = -1.
Подставить в формулу и вычислить b:
х₀ = -b/2a
-1 = -b/6
-b = -6
b = 6.
2) Найти свободный член с:
y = 3x² + bx + c
у₀ известно (координата у точки В) = 2, b вычислено = 6.
Подставить в уравнение все известные значения и вычислить с:
2 = 3 * (-1)² + 6 * (-1) + с
2 = 3 - 6 + с
2 = -3 + с
2 + 3 = с
с = 5.
При b = 6 и с = 5 вершина параболы находится в точке В(-1; 2).
В решении.
Объяснение:
Дана функция y=√x
а) Чтобы определить принадлежность точки графику, нужно известные значения х и у (координаты точки) подставить в уравнение. Если левая часть равна правой, то принадлежит, и наоборот.
у=√х
1) А(63; 3√7)
3√7 = √63
3√7 = √9*7
3√7 = 3√7, проходит.
2) В(49; -7)
-7 = ±√49
-7 = -7, проходит.
3) С(0,09; 0,3)
0,3 = √0,09
0,3 = 0,3, проходит.
б) х ∈ [0; 25]
y=√0 = 0;
y=√25 = 5;
При х ∈ [0; 25] у∈ [0; 5].
в) Найдите значения аргумента, если у∈ [9; 17]
у = √х
9=√х х=9² х=81;
17=√х х=17² х=289.
При х ∈ [81; 289] у∈ [9; 17].
Поделитесь своими знаниями, ответьте на вопрос:
Запишіть нескінченні періодичні дроби у вигляді звичайних та обчисліть значення виразу 0, 2(3)-0, (15)