a=4
(2;1)
Объяснение:
Из условия известно, что первое уравнение этой системы обращается в верное равенство при x= 8 и y= −7; тогда, подставив эти значения переменных в первое уравнение, можно найти коэффициент a.
Получим:
ax+3y=11;8a+3⋅(−7)=11;8a=11−(−21);8a=32;a=4.
При таком значении коэффициента a данная система примет вид:
{4x+3y=115x+2y=12
Для решения этой системы уравнений графически построим в одной координатной плоскости графики каждого из уравнений.
Графиком уравнения 4x+3y=11 является прямая.
Найдём две пары значений переменных x и y, удовлетворяющих этому уравнению.
x −1 2
y 5 1
Построим на координатной плоскости xОy прямую m, проходящую через эти две точки.
Графиком уравнения 5x+2y=12 также является прямая.
Найдём две пары значений переменных x и y, удовлетворяющих этому уравнению.
x 0 2
y 6 1
Построим на координатной плоскости xОy прямую n, проходящую через эти две точки.
Получим:
Прямые m и n пересекаются в точке A, координаты которой являются решением системы, т. е. A(2;1)
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
Вычисли первые четыре члена и 10-й член арифметической прогрессии (an), если общая формула an=2n−3. a1= a2= a3= a4= a10= !
a1=2.1-3=2-3=-1
a2=2.2-3=4-3=1
a3=2.3-3=6-3=3
a4=2.4-3=8-3=5
a10=2.10-3=20-3=17
d=a2-a1=a3-a2=a4-a3=
d=2
an=a1+(n-1)d, an=-1+(n-1).2, naprimer
a50=-1+49.2=-1+98=97